Basic for PIC Microcontrollers 1

BASIC for PIC microcontrollers

Author: Nebojsa Matic

©Copyright 200 1.mikroElektronika All Rights Reserved. For any comments contact webmaster.

The complete BASIC programming language manual for PIC microcontrollers!

Contents
CHAPTERI THE FUNDAMENTS OF PIC BASIC
CHAPTER II BASIC ELEMENTS OF PIC BASIC LANGUAGE
CHAPTER III OPERATORS
CHAPTER IV INSTRUCTIONS
CHAPTERV SAMPLE PROGRAMS FOR SUBSYSTEMS WITHIN THE
MICROS
CHAPTER VI SAMPLES WITH PIC16F84 MICROCONTROLLER
CHAPTER VII SAMPLES WITH PIC16F877 MICROCONTROLLER
APPENDIX A MPLAB

APPENDIX B MicroCode studio

F=TE-mail afriend about

thisitem

Books Index
:I Practical connection samples for:

—I Program examples Temperature sensors, AD and DA converters LCD and LED displays, relays. Every
example is commented in details with detailed connection scheme

[T/ Development system Program writing
Learn how to write your own program, correct mistakes and use it to start a
microcontroller.
Instruction Set
Every instruction is explained in detail with the example how to use it.
MicroCode studio
How to install it, how to use it
MPLAB program package
How to install it, how to start the first program, how to connect BASIC and MPLAB
etc.

In this book you can find:

To readers knowledge:

The contents published in the book "Programming in BASIC for PIC microcontrollers' is subject to copyright and it must not be
reproduced in any form without an explicit written permission released from the editorial of mikroElektronika.

The contact address for the authorization regarding contents of this book: office@mikroelektronika.co.yu .

The book was prepared with due care and attention, however the publisher doesn't accept any responsibility neither for the exactness

of the information published therein, nor for any consegquences of its application. All the remarks bearing references to the product
described in this book should be primarily sent to the manufacturer.

Basic for PIC Microcontrollers 2

PIC isaregistered and protected trademark of the Microchip Technology Inc. USA. Microchip logo and name are the registered

tokens of the Microchip Technology. Copyright 1994, Microchip Technology Inc. All other tokens mentioned in the book are the
property of the companies to which they belong.

Preface:

Dear readers,
In order to simplify things and crash some prejudices, | will allow myself to give you some advice before reading this book.

Y ou should start reading it from the chapter that interests you the most, in order you find suitable. Asthetime goes by, read the parts
you may need at that exact moment.

If something starts functioning without you knowing exactly how, it shouldn't bother you too much. Anyway, it is better that your
program works than that it doesn't.

Always stick to the practical side of life. It is much better for the program to be finished on time, to bereliable and, of course, to be
paid for it aswell as possible. In other words, it doesn't matter if the exact manner in which the electrons move within the PN

junctions your microcontroller is composed of escapes your knowledge. Y ou are not supposed to know the whole history of
electronicsin order to assure theincome for you or your family.

Do not expect that you will find everything you need in one single book. The information are dispersed literally everywhere around
you, so it is necessary to collect them diligently and sort them out carefully. If you do so, successisinevitable.

At thevery end | would like to express my gratitude to my colleagues Dragan Andric and Predrag Micakovic for their great
contribution in writing thisbook.

With al my hopes of having done something worthy investing your timein.

Y ours NebojsaMatic

Basic for PIC Microcontrollers 3

Chapter 1

Introduction

1.1 BASIC for PIC microcontrollers

1.2P1C microcontrollers

1.3 First program written in PIC BASIC

1.4 Writing and compilation of aBASIC program

1.5 L oading a program into the microcontroller memory
1.6 Running your program

1.7 Problem with starting your program (what if it doesn't work)

Simplicity and ease, which the higher programming languages bring for program writing as well as broader application of the
microcontrollers, was enough to incite some companies as Microengeneering to embark on the development of BASIC programming
language. What did we thereby get? Before all, the time of writing was shortened by employment of prepared functionsthat BASIC
bringsin (whose programming in assembler would have taken the biggest portion of time). In thisway, the programmer can
concentrate on solving the essential task without losing his time on writing the code for LCD display. To avoid any confusion in the
further text, it is necessary to clarify three terms one encounters very often.

Programming language is understood as a set of commands and rules according to which we write the program and therefore we
distinguish various programming languages such as BASIC, C, PASCAL etc. On the BASIC programming language the existing
literatureis pretty extensive so that most of the attention in this book will be dedicated to the part concretely dealing with the
programming of microcontrollers.

Program consists of sequence of commands of language that our microcontroller executes one after another. The structure of BASIC
program is explained with more detailed in the second chapter.

BASIC compiler is the program run on PC and it's task is to translate the original BASIC codeinto the language of 0 and 1
understandabl e to the microcontroller. The process of translation of aBASIC program into an executive HEX code is shown on the
image below. The program written in PIC BASIC and registered as afile Program.bas is converted into an assembler code
(Program.asm). So obtained assembler code isfurther translated into executive HEX code which is written to the microcontroller
memory by a programmer. (programmer is a device used for transferring HEX files from PC to the microcontroller memory)

Basic for PIC Microcontrollers 4

Frograrn translated into

Frograr translated
HE® code understandable

Frograrn written in PIZ

into assermbler's . 1 Tt 12
BASIC language coda to microcontroler [HPZ R :|
z T
[Iraz Ran|]
1 16
[IrpToCK azci]
4 15

= MCLR O5CE
Frogrammin EI-: PIC :1|4

Assembler BLIMNK.HEX g | s 16F84
BLIMK.BAS BLIME. ASM . device E|; 5 Weded :1|1
[{rE0ANT RET[]
T [H
[{rE1 REG]
FIC BASIC compiler Assembler converts Frogramrning device T:HBZ RES :‘l‘
converts prograrm inta ASM code inta HEX writes HEX code inte 5 e
assernbler's code code thermerory of [JrEs rE4[]
microcontroler

Asaprogramming language, BASIC is sincelong time ago known to the PC usersto be the easiest and the most widespread one.
Nowadays this reputation is more and more being transferred onto the world of microcontrollers. PIC BASIC enables quicker and
relatively easier program writing for PIC microcontrollers in comparison with the Microchip's assembling language MPASM. During
the program writing, the programmer encounters always the same problems such as serial way of sending messages, writing of a
variable on LCD display, generating of PWM signals etc. All for the purpose of facilitating programming, PIC BASIC containsits
built-in commands intended for solving of the problems often encountered in praxis. Asfar as the speed of execution and the size of
the program are concern, MPASM isin small advantage in respect with PIC BASIC (therefore exists the possibility of combining PIC
BASIC and assembler). Usually, the part of the program in which the same commands are executed many times or time of the
execution critical, are written in assembler. Modern microcontrollers such as PIC execute the instructionsin asingle cycle lasting for 4
tact of the oscillator. If the oscillator of the microcontroller is4MHz, (one single tact lasts 250nS), then one assembl er instruction
requires 250nS x 4 = 1uSfor the execution. Each BASIC command isin effect the sequence of the assembler instructions and the

exact time necessary for its execution may be obtained by simply summing up the times necessary for the execution of assembler
instructions within one single BASIC command.

The creation of PIC BASIC followed the great success of Basic stamp (small plate with PIC16F84 and serial eeprom that compose the
whole microcontroller system) asits modification. PIC BASIC enables the programs written for the original Basic stamp to be
translated for the direct execution on the PIC16xxx, PIC17Cxxx and PIC18Cxxx members of the microcontrollers family. By means
of PIC BASIC it is possible to write programs for the PIC microcontrollers of the following families PIC12C67x, PIC14C000,
PIC16C55x, PIC16C6x, PIC16C7x, PIC16x84, PIC16C9xx, PIC16F62x, PIC16C87x, PIC17Cxxx and PIC 18Cxxx. On the contrary,
the programs written in PIC BASIC language cannot be run on the microcontrollers possessing the hardware stack intwo levelsasis
for example the case of PIC16C5x family (that impliesthat by using the CALL command any subroutine can be called not more than
two timesin arow).

For the controllers that are not able to work with PIC BASIC there is an adequate substitution. For example, instead of PIC16C54 or
58, we can use pin compatible chips PIC16C554, 558, 620 and 622 also operating with PIC BASIC without any differencein price.

Currently, the best choice for application development, using PIC BASIC are microcontrollers from the family : PIC16F87x,
PIC16F62X and of course the famous PIC16F84. With this family of PIC microcontrollers, program memory is created using FLASH
technology which provides fast erasing and reprogramming, thus allowing faster debugging. By a single mouse click in the
programming software, microcontroller program can be instantly erased and then reloaded without removing chip from device. Also,
program loaded in FLASH memory can be stored after power supply has been turned off. The older PIC microcontroller series
(12C67x, 14C000, 16C5B5%, 16C6xx, 16C7xx and 16C92x) have program memory created using EPROM/ROM technology, so they

Basic for PIC Microcontrollers 5

can either be programmed only once (OTP version with ROM memory) or have glass window (JW version with EPROM memory),
which allows erasing by few minutes exposure to UV light. OTP versions are usually cheaper and are used for manufacturing large
series of products. Besides FLASH memory, microcontrollers of PIC16F87x and PIC16F84 series also contain 64-256 bytes of
internal EEPROM memory, which can be used for storing program data and other parameters when power is off. PIC BASIC has
built-in READ and WRITE instructions that can be used for loading and saving datato EEPROM. In order to have complete
information about specific microcontroller in the application, you should get the appropriate Data Sheet or Microchip CD-ROM.

-
(7)o
% The program examples worked out throughout this bookare mostly to be run on the microcontrollers PIC16F84 or

PIC6FS877, but could be, with small or almost no corrections, run on any other PIC microcontroller.

In order to start program writing and application development in BASIC programming language, it is necessary to have at least one
text editor, PIC BASIC compiler and according to someone's wish - a system in devel opment on which the program is supposed to be
checked. For writing BASIC program code, any text editor that can save the program file as pure ASCI| text (without special symbols
for formatting) can be used. For this purpose editors like Notepad or WordPad are also good. Even better solution than the use of any
classical text editor isthe use of some of the editors specially devised for program code writing such asMicrochip's MPLAB or
Mecanique's Micro CODE STUDIO.

The advantage of these program packagesisthat they take care of the code syntax, free memory and provide more comfortable
environment when writing a program (appendices A and B describe MPLAB and MicroCODE STUDIO editors).

Thefirst step isthe writing of aprogram code in some of enumerated text editors. Every written code must be saved on asinglefile
with the ending .BAS exclusively as ASCII text. An example of one simple BASIC program - BLINK.BAS is given.

Basic for PIC Microcontrollers 6

.I Frogram: ELINWK. E&3
[]

' Example of a program where the LED diode connected on

' PORT B pin 7 switches on and off every 0.5 seconds

Loop:
High PORTE. 7 ' Switch on LED on pin 7 of port E
Pause 500 ' 0.5 sec pause
Low PORTE.7 ' 3witch off LED on pin 7 of port B
Pause 500 ' 0.5 zec pause
Goto loop ' Go back to Loop
End ' End of program

When the original BASIC program is finished and saved asasinglefile with .BASending it is necessary to start PIC BASIC
compiler. The compiling procedure takes place in two consecutive steps.

Step 1. In thefirst step compiler will convert BASfilein assembler s code and saveit asBLINK.ASM file.

Step 2. In the second step compiler automatically calls assembler, which converts ASM - type file into an executable HEX code ready
for reading into the programming memory of amicrocontroller.

The transition between first and second step isfor auser - programmer an invisible one, as everything happens compl etely
automatically and isthereby wrapped up as anindivisible process. In case of asyntax error of a program code, the compilation will
not be successful and HEX file will not be created at all. Errors must be then corrected in original BAS file and repeat the whole
compilation process. The best tacticsis to write and test small parts of the program, than write one gigantic of 1000 lines or more and
only then embark on error finding.

Asaresult of asuccessful compilation of aPIC BASIC program the following files will be created.

- BLINK.ASM - assembler file

- BLINK.LST - program listing

- BLINK.MAC - file with macros

- BLINK.HEX - executable file which is written into the programming memory

Filewith the HEX ending isin effect the program that is written into the programming memory of a microcontroller. The
programming device with accessory softwareinstalled on the PC is used for this operation. Programming device isa contrivancein
charge of writing physical contents of aHEX fileinto the internal memory of a microcontroller. The PC software reads HEX file and
sends to the programming device the information about an exact location onto whichacertain valueisto be inscribed in the
programming memory. PIC BASIC creates HEX filein a standard 8-bit Merged Intel HEX format accepted by the vast majority of

Basic for PIC Microcontrollers 7

the programming software. In the text bellow the contents of afile BLINK.HEX isgiven.
— Program: BLINK HEX |
[Page : 15 1

: 100000002828 A301AZ00FF30AZ07031CcA307031CRA
:1000100023280330A100DF200F2003283A101E33E20
1000200040001 05FC30031C1828A00703181528FC
:10003200040076400410F152820181E28A01CE222844
:1000400000002228080083130313831264000300E1
:1000500006148316061083120130A300F430022028
:10006000061058316061083120130A300F43002201C
:0600700028286300332876

:0Z2400E007 53 DFE

:00000001FF

Besides reading of aprogram code into the programming memory, the programming device servesto set the configuration of a
microcontroller. Here belongs the type of the oscillator, protection of the memory against reading, switching on of awatchdog timer
etc. The connection between PC, programming device and the microcontroller is shown.

HIF G 1 L 12
[re= Rad []
Z T
[(raz R[]
1 1e
@ Poser [Tk w5ci [
1 Bamy 4 15
¥ MR pyc escz
5] < 14
TE wss {BF8d :1|1—
OreoaHT RET I H—
i 7 [H]
[Jre1 RE&
a M
Progpamaor [[re= RE[]
o G
[Ore= RE4[]

The programming software is used exclusively for the communication with the programming device and is not suitable for any code
writing. The one comprising text editor, software for programming microcontroller and possibly the simulator as an entity bearsthe
name IDE i.e. Integrated Development Environment. One such environment isa Microchip's software package MPLAB.

For correct operating of amicrocontroller, i.e. correct running of aprogram it is necessary to assure the supply of the
microcontroller, oscillator and the reset circuit. The supply of the microcontroller can be organized with the simple rectifier with
Gretz junction and LM 7805 circuit as shown in the picture below.

Basic for PIC Microcontrollers 8

O

Transformer

To-21

Ba0c1000 “
T

$ LM7 201

C1=22pF, C2 = 1008F,
C3=10pF, R=1K

2200

_[
]
%—-—?—-—I

The oscillator of the microcontroller can be a4MHz crystal and either two 22pF capacitors or the ceramic resonator of the same
frequency (ceramic resonator already contains the mentioned capacitors, but contrary to the osdllator has three termination instead of
only two). The speed at which the microcontroller operatesi.e. the speed at which the program runs depends heavily on this frequency
of an oscillator. In the course of an application development the easiest to do isto use theinternal reset circuit in amanner that MCLR
pin is connected to +5V through a 10K resistor. In the sequence of text the scheme of arectifier with circuit of LM 7805 which gives
the output of stable +5V, aswell asthe minimal configuration re levant for the operation of a PIC microcontroller.

Rtz Rid [

R roo] e
1&

RsehT oKl G5]—I—_,_—4' |
15 =

WCLR pjc vsce]—T—|| 3'

L
P, < Ws 14
o—1" 16F84 waf——]

£ e o L2 e

&
[|reoMnT RET——————+
T 1z

1 Ored res [] =
T:RBE RES :1|1 To see the effect of
z [BLIMNK program, the
[Jres= RE4[] resistor and the LED

diod= are cormected to
7th pin of the port B

Minimal hardware configuration necessary for the operation of PIC microcontroller

After the supply is brought to the circuit structured according to the previous pictures, PIC microcontroller should ook animated, and
its LED diode should be twinkling once each second. If the signal is completely missing (LED diode doesn't twinkle), the check isto
be doneto ascertain if the +5V is present at al the corresponding tentacles on PIC microcontroller.

The usual problems of bringing the PIC microcontroller into the working conditions comprise the check of few ext ernal components
and inquiry into the fact whether their values correspond to the wanted ones or whether all the connections with the microcontroller
have been done properly. There are some suggestions that may be useful in order to help bringing to

Step 1. Check whether the MCLR pin is connected to 5V or over acertain reset circuit or simply with 10K resistor. If the pin remains

Basic for PIC Microcontrollers 9

disconnected, it'slevel will be "floating" and it may work sometimes, but usually it won't. Chip has power-on-reset circuit, so that
appropriate external "pull-up” resistor on MCLR pin should be sufficient.

Step 2. Check whether the connection with the resonator is stable. For most PIC microcontrollers to begin with AMHz resonator is
well enough.

Step 3. Check the supply. PIC microcontroller spends very little energy but the supply must be pretty well filtrated. At the rectifier
exit, the current isdirect but pulsing and as such is by no means suitable for the supply of microcontroller. To avoid this pulsing, the

electrolytic capacitor of high order of capacitance (say 470 nF) is placed at the exit of arectifier.

If PIC microcontroller supervises the devices that pull lot of energy from the energy source they can in their own rights provoke
enough malfunctioning on the supply lines so that the microcontroller can stop working normally and start revealing somewhat strange
behavior. Even seven-segmented LED display may well induce tension drops (the worst scenario iswhen all the digits are 8, for then
LED display needs most power), if the sourceitself is not capable to procure enough current (for the case of 9V battery just for an
example).

Some PIC microcontrollers have multi-functional entrancéexit pins, asit is the case with PIC16C62x family (PIC16C620, 621 and
622). The microcontrollers belonging to this family are provided with analogue comparators at port A. After putting those chipsto
work, port A is set onto an anal ogue mode, which brings about the unexpected behavior of the pin functions on this port. Any PIC
microcontroller with analogue entrances will after reset show itself in an analogue mode (if the same pins are used as digital linesthey
must then be set into adigital mode).

One of the possible sources of troublesisthat the fourth pin of the port A shows singular behavior when it is used as exit (because this
pin has open collectors exit instead of usual bipolar state). That implies that the inscription of the logical zero on this pin will
nevertheless set it on the low level, but the inscription of logical unit will let it float somewhere in between instead of setting it at high
level. To coercethis pin react in a proper way the pull -up resistor is placed between RA4 and 5V. The magnitude of this resistor may
be between 4.7K and 10K, depending on theintensity of the current necessary for the convected ent rance. This pin functions as any
other pin used as an entrance (all the pins are after reset procedure set as exits).

During the work with PIC microcontrollers more problems are to be expected. Sometimes what is being tried seems like going to
work, but it doesn't happen to be the case regardless of how hard had we put an effort. Normally there is more than one way to solve
something. A different angle approach may bring a solution with the same effort.

Basic for PIC Microcontrollers 10

Chapter 2

Introduction

2.1 ldentifiers

2.2 Labds

2.3 Constants

2.4 Variables

2.5 uences

2.6 Modifiers

2.7 Symbals

2.8 Direction INCLUDE

2.9 Comments

2.10 Programming line with more instructions
2.11 Transfer of ainstruction into another line
2.12 Define

2.13DISABLE

2.14 ENABLE

2.15 ON INTERRUPT
2.16 RESUME

Next chapter describes the basic elementsof a PIC BASIC language and the mode to use them in the efficient program writing. It is
somewhat of an artistry to write acode that is both readable and easy to handle. Program is supposed to be understandable, before all,
to the programmer himself and then later to his colleaguesin charge of doing some corrections and adding aswell. In the further text
is given one example of the program written in a clear and manifest way.

Donjaslikanemaprevod

Basic for PIC Microcontrollers

Program's header —

— &

11

Program: PROEA . B&3

'* Napomena

'* Tme prod.: PROBA.BAS
'* Copwvright: Copyright
'* Datum 11/20401
'* Werzija : 1.0

DEFINE 03C &

(el

2001 mikroElektronika

Efekat blinkanja dioda
L o e e e el e e i e e el ol el e i e e e el el e e el e ol e e e

Page: 151

Lol o e i i i el e e i e i i ol e i e e i e e e ol i e e i e e e

*
*
*
*
*
*

Definizanje oscilatora

Define direction 1
Symbols —f— symbol LEDDiode FORTE ' Led diode =u na portu B
Constants — Ugasi com $00 ' Konstanta
Tpali con §FF ' Konstanta
“ariahle — 1 i wvar hyte ' Pomocna promenliiva
Command — TRISE = 500 ' zvi pinovi porta B su izlazni
i=0 ' inicijalizacija promenliive i
Label — Main: ' Pocetak programa
for i=1 to 10 ' Petlija koja ponavlija blinkanje
Subroutine —1— gosub Blink ' 10 puta
next i
goto Main ' ponowri celu petliu
Comment
Elink: ' pocetak podprograma

Extensive use of comments, symbols, labels and other elements supported by PIC BASIC, program can be rendered considerably
clearer and more understandable what isin later corrections and enlargement of the program offering programmer a great deal of help.

In order to make it even more understandable it is advisable to separate the program into logical entities as those parts to which ajump

LEDDiode=Upali
Pauza 1000
LEDDiode=Ugasi
Pausze 1000
Eeturn

End

PORTE=5FF

pauza od jedne sekunde
PORTE=500

pauza od Jjedne sekunde
powvratak iz podprograma
Zavrsetak programa

with the goto instruction can be performed or subprogramsto be called with the gosub instruction.

Labelsindicating the beginning of the segments of programs should have meaning making some obvious sense. If it, say, exists such
segment of aprogram that switches on and off LED diodes on some of the ports, the label indicating the beginning of that part of the

program could well be for example " Blink" (LED diodes shine or go dark - therefore they blink) or the like.

Elements determining one BASIC program are the following:

- ldentifiers
- Labds

- Congants
- Variables
- Sequences
- Modifiers
- Symbols

- Comments

Basic for PIC Microcontrollers 12

- Include

- DEFINE

- _ (continuation of ainstruction transferred into another line)
- On interrupt

- Disable

- Enable

- Resume

Although they are many at first glance only but afew of them isfair enough for writing approximately 90% of all programs.
Nevertheless for the sake of completeness on all the elementswill be treated on the following pages.

Identifier represents the name of some PIC BASIC element. Identifiersare used in PIC BASIC in order to sign program lines and the
names of various symbols. Identifier itself could be any string of letters, numbers or even dashes with the limit that it is not allowed to
begin with anumber. Identifiers don't distinguish small and capital letters, so that the strings TASTER and Taster are treated the same
way. The maximum length for such stringsis 32 characters.

symbol Taster
symbol LED_DO

PORTA.O *RAD se identifikuje kao “Taster”
PCORTER.O "RBO se identifikuje kao “LED_0O"

Label represents textual sign for some programming line or respectively some of its fragments on which the program can jump
through some of the instructions used to change the program flow. It is obligatory to end the label with. Contrary to many old BASIC
versions, PIC BASIC doesn't allow numerical values as labels.

symbal Taster = PORTA.D
symbaol LED_0O = PORTB.O

BO wvar byte

Main: " Label Main
BO=10
button Set,0,255,0,80,1,LED_toggle
goto Main

LED_toggle: " Label LED_toggle
toggle LED_D
goto Main
end

Basic for PIC Microcontrollers 13

Name_constants con value_constants

With this declaration is to some chosen name assigned the value that is constant. For example the constant minute hasthe value of 60
seconds, bearing the recollection to the number of secondsin aminute. Written at whatever program position, minute will be
interpreted by complier asif it had been written 60. There are two very important reasons for such habit in programwriting. The first
one is the programmers wish to be more manifest. Good visibility is achieved by giving to the variables and constants those names
that could be associated with the very function they assume within the program. On the other hand, the big ger flexibility of the
program is obtained aswell. It isfor an example so that if it becomes necessary in some future work to use the same code but with a
change value of the constant, it is enough make achange in the part for declaration instead performing search and replace throughout
the program.

minute con 60 Mo, of seconds in a minute
if seconds < minute then minute = minute + 1 ' If the number of seconds is different
' frorm 60, raise the variable minutes

Constants can be equally written in decimal, hexadecimal and binary form. Decimal constants are written without any prefix.
Hexadecimal constants start all with asign $ and binary with %. To make the programming easier, single letters are converted into
their ASCII counterparts. The sign constants must be placed into the inverted comas and they contain only oneletter asarule (in
adverse case they are string constants).

Y " 56 decimal

£0F "15 hexadecim al

2 10001100 "140 binary

A "ASCII value for decimal 65
g "ASCII value for decimal 100

Name _variable var Type variable

Variables servefor temporary storing of dataand results of various arithmetic and logical operations. Variables are stored on the
microcontrollers RAM locations, which means that the total number of the variables that can be used depend on the size of RAM.

Accordingly for the 36-byte microcontroller, 22 bytes are reserved for variables.

Variable defining is achieved with the formal word var at the beginning of the program. PIC BASIC supports variables like bit, byte
and word . Variable typeis selected with reference to the expected val ue that this same variable can assume in the course of the
program run. Therefore the variable of the bit type can take value of 0 or 1, the variable of the byze values from 0to 256 and finally,
word from 0 to 65535.

L

Fleg war hit Fleq is a wariahle of the type hit

BO var byte "BO is a variable of the type byte
W0 var word W0 is a variable of the type word
BEO var W0.byted "BO is a first byte of the word W0

Bl var W0.bytel "Bl is a second byte of the word W0

Basic for PIC Microcontrollers 14

Name_sequence var type_element [number of the elements]

Sequences of the variables are defined in asimilar way aswe have done with the variables. "Type_element" represents the val ue of
every element of the sequence, and can be bit, byte or word.

The number of the elements of the sequenceis given through value between "[]".Each element of the sequenceis accessible by an
index. Index starts with zero. When we come to define the number of the elements of the sequence one must always have in mind that
the number of locationsin RAM memory on which we intend to store variables finite. The next table shows the maximal number of
the elements of various types.

The size of the sequence
Element of the Maximal number
sequence of elements
BIT 256
BYTE 96*
WORD 48%*

* Depends on microcontroller

Sequencel var byte[10] ' the sequence of 10 elements of the type byte

Sequencel [0] representsthe first element of the sequence and sequencel [9] the last el ement of the sequence "sequencel”.
Sequence? var byte[8] ' the sequence of 8 elements of the type byte

Sequence? [0] representsthe first element of the sequence and sequence? [7] the last element of the sequence " sequence2".

new_name var old_name

By means of modifier it is possible to introduce a new name for the variable already defined. This direction is used relatively rarely
but it ought to be mentioned for the sake of completeness. It isused in anidentical way asadirection for the definition of the
variables. Introduction of anew nameis effectuated through the official word var.

aD CResult var waord
Highert vte var AD Cresult.byiel " The new name for the higher byte of the
“ward AD Cresult

Basic for PIC Microcontrollers 15

symbol old_name = new_name

Symbols are granted the function exactly the ssme asdirection for modifying variables, i.e. they serve for assigning the new namesto
the variables and constants. Symbols are introduced for the compatibility of the programs written for Basic Stamp and cannot be used
for introducing variables.

symbol Taster = PORTA.Q " Taster is a new name for RAD
symbol LEC_0 = PORTBE.O ‘LED_0O is a new name for RBO

INCLUDE "the name of thefile"

Direction INCLUDE serves for inserting of a segment of aBASIC file. In this manner is rendered possible to store some general
definitions of variables or subroutines that are being executed as parts of severa different programs. The effect achieved isthe same as
if at the location on which is placed the direction INCLUDE simultaneously copied the contents of wholefile.

Include "modedefs.bas" ' The transfer modes that use the
‘commands SERIN and SERCUT

symbaol 50 = PORTA.3

symbal 51 = PORTE.D

BO var byte

Loop:
serin SI,T2400,B0
serout SO, T2400,[B0]
goto Loop
end

".... Comment...."

In the course of program writing there's a space for lot of comments even if it may be self-evident what is the main purpose of the
program. Although it may well seem as a shear waste of time, it may play later a crucia role (comments don't occupy an additional
memory space in the memory of amicrocontroller). Comments should give useful instructions about al that the program is doing.
Comment as Set Pin0 to 1 simply explains the syntax of the language but fails to pinpoint the purpose of the act. Something of a sort
Turn the Relay on may proveitself to be much more useful.

At the beginning of the program it should be described what is the program used for, who were the authors and when was it written.
Stipulating the information concerning revision and the exact date may be useful too. Even every concrete statement about connection
to each pin can be crucial in an effort to memorize the very hardware for which this program was designed to operate.

Basic for PIC Microcontrollers 16

syrmbol LED = PORTE.O ''LED diode is connected to RBO
Main: " The beginning of the program
LED = 1 " Turn on LED
Pause 500 " Pause 500 mS
LED = 0O " Turn off LED
Pause 500 " Pause 500 mS
goto Main "Jump to the beginning of program

L

end End of the program

Compactness and better visuality of a program can be achieved by logically groupinginstructions by using ":". In that way the block
of instructions can be placed all in asingle line, while instruction remain mutually separated with ":".

B2=B0
BO=B1
B1=B2

The three upper instructions can be written in asingle row as:

B2=B0:B0=B1:B1=B2

In case that instruction has big number of parameters so that they cannot stay al into another programming line, thereis apossibility

that the intake of parameters continue in the next row what is done by meansof "_" at the end of line. The typical examples are the
instructions lookup, branch and sound.

lookup KeyPress,["1","4","7","*" "2","5","8","0","3","6","9","#","N"]

DEFINE the value parameter

Instructions of the PIC BA SIC language can have some parameters from which depends the exact way the instructions are executed.
Those parameters assume some predefined values that appear in the most of the cases. A frequency of an oscillator is a good example
for that. If not otherwise stated the tact of the oscillator istaken by default as 4MHz. In case that the used oscillator is of adifferent
frequency from 4MHz it is necessary using the DEFINE direction to specify that frequency and communicateit to all the programs
that contain within instructions depending on the tact of the microcontroller. One such instruction is for the seria transfer. In case that
the instruction DEFINE is omitted and in gear is 8Mhz instead of 4Mhz oscillator, all the instructions that depend on the tact of
microcontroller will be executed 2 times quicker. For instance, if the parameter of the speed of transfer amounts to 9600 bauds by
using SERIN instruction, the data transfer would be effectuated at the speed 19200. In the same way the instruction pause 1000 the

Basic for PIC Microcontrollers 17

delay realized would be 0.5sinstead 1.0s. It is also possible similarly to upgrade the resolution of the instructions. What is next isthe
review of the usage for DEFINE direction in case of adjusting of parameters explained within each particular instruction.

The use of a direction DEFINE

parameter

description

instruction on which it
acts

I2C_HOLD 1

pause 12C transfer while
the tact is on a low level

I12COUT, 12COUT

I2C_INTERNAL 1

internal EEPROM in series
16Cexxx and 12Cxxx of the
PIC microcontroller

I12COUT, 12COUT

I2C_SCLOUT 1

serial tact is a bipolar at
the place of an open
collector

I2CWRITE, I2CREAD

I2C_SLOow 1

for the tact > BMHz OSC
with the devices of a
standard velocity

I2CWRITE, I2CREAD

LCD_DREG PORTD

LCD data port

LCDOUT, LCDIN

LCD_DBIT O Initial bit of a data 0 or 4 LCDOUT, LCDIN
LCD_RSREG PORTD RS (Register select) port LCDOUT, LCDIN
LCD_RSBIT 4 RS (Register select) pin LCDOUT, LCDIN
LCD_EREG PORTD enable port LCDOUT, LCDIN
LCD_EBIT 3 enable bit LCDOUT, LCDIN

LCD_RWREG PORTD

read/write port

LCDOUT, LCDIN

LCD_RWBIT 2

read/write bit

LCDOUT, LCDIN

LCD_LINES 2

No of LCD lines

LCDOUT, LCDIN

2000

LCD_INSTRUCTIONUS

the time of delay of
instruction in microseconds

(us)

LCDOUT, LCDIN

LCD_DATAUS 50

the time of delay of data in
microseconds

LCDOUT, LCDIN

tact of the oscillator in

all instructions of the serial

transfer

OsC 4 MHz: 3(3.58) 4 8 10 12 16 transfer and next pause
20 25 32 33 40 P
setting of OSCCAL for

OSCCAL_1K 1 PIC12C671/CE673
microcontrollers

OSCCAL_2K 1 the number of data bits

SER2_BITS 8 the slowing of the tact of | g rerouT SHIFTIN

Basic for PIC Microcontrollers 18

SHIFT PAUSEUS 50 instruction LFSR in 18Cxxx LFSR
- microcontrollers

BUTTON_PAUSE 10 BUTTON
CHAR_PACING 1000 SEROUT, SERIN
HSER_BAUD 2400 HSEROUT, HSERIN
HSER_SPBRG 25 HSEROUT, HSERIN
HSER_RCSTA 90h HSEROUT, HSERIN
HSRE_TXSTA 20h HSEROUT, HSERIN
HSER_EVEN 1 HSEROUT, HSERIN
HSER_ODD 1 HSEROUT, HSERIN

Example:

Slikei primeri

DISABLE

Before ent ering the interrupt routine, it is necessary to switch off theinterruptsin order to avoid any new interruption in the course of
data processing. The interruptions are forbidden in amanner that the instruction "DISABLE" reset the bit GIE in the register
INTCON.

Disable " Forbid the interruptions
ISR: " Start of an interruption routine

" The end of the interruption routine
Fesume
Enable

ENABLE

In the course of execution of the interruption routine, the interrupts must be forbidden by resetting the bit GIE in the INTCON register.
When theinterruption processing is finished, the interruptions must be allowed once again with the instruction "ENABLE".

Basic for PIC Microcontrollers 19

Disable
ISR: " Start of the interruption routine
" The end af the interruption routine
Fesume
Enable " Allow interruptions

Oninterrupt LABEL

With instruction "On interrupt” isindicated the label on which the program will "jump" when the interruption happened, i.e. from
which label the interruption routine starts.

On interuupt ISR ' The interruption routine starts from the label ISR

Main: " Main program
gota Main
Disable
ISE: ' Start of the interruption routine
" The end of the interruption routine
Fesume
Enable
RESUME

Return from the interruption routine to the main program.

Disable
ISR: " Start of the interruption routine

" End of the interruption routine
Resume " Exit from the interruption routine
Enable

Basic for PIC Microcontrollers 20

Chapter 3

Introduction

3.1 Expressions
3.2Instructions

3.3 Arithmetical operators

3.3.1 Multiplication
3.3.2 Division

3.3.3 Shift
3.34ABS

3.3.5 COS
3.3.7DIG

3.3.8 MAX and MIN
3.3.9NCD

3.3.10 REV

3.3.11 SIN

3.3.12 SOR

3.4 Bit operators
3.5 The operators of comparison

3.6 Logical operators

The PIC BASIC language possesses the operator set used to assign the values, compare objects and perform multitude of other
operations. The objects manipulated for that purposes are called operands (which themsel ves can be variables or constants). The
operators of PIC BASIC language must have at |east two operands. They serve to create instructions and expressions that together
with variables, constants and comments in effect compose the program.

Combinations of operators and operands are called expressions. The expression does the computation and furnishes the result or starts
some other activity.

A=B+C ' The expression that sums up the values of the variables B and C and
- ' stores the result into the variable A
In application of any expression the attention must be paid that the result of the computation must be within the range of variable A in

order to avoid the overflow and therefore the evident computational error. If the result of expression amountsto 428, and the variable
A isof BY TE type having range between 0 and 255, the result accordingly obtained will be 172 - obviously the wrong one.

Basic for PIC Microcontrollers 21

Each instruction determines an action to be performed. As arule, the instructions are being executed in an exact order in which they
arewritten in the program. However, the order of their execution can be changed aswell emp loying the instructions for the change of
the flow of aprogram to another segment of the program such as the instructions of the ramification, jump or interrupt.

IF Time = 60 THEN GOTO Minute "if A = 23 jump to label Minute
Instruction IF...THEN contains the conducting expression Time=60 composed in its own rights of two operands, the variable Time,

constant 60 and the operator of comparison (=). Theinstructions of PIC BASIC language can be distinguished as the instructions of

choice (decision making) repeating (loops), jump and specific instruction for an access to the peripheries of the
microcontrollers. Each of theseinstructionsis explained in detail in Chapter 4.

7

Operators are numerous, but for almost 90% of all the programs it is necessary to know only few of them. It suffices to look
how many operators are used in the examples in Chapter 5, 6 and 7.

After the activitiesthey perform, the operators can be classified into the following categories:

- Arithmetic operators

- Bit operators?

- The operators of comparison
- Logical operators

All arithmetic operators work in 16-bit precision with the unsigned values what means that the range of the operand isfrom 0 to
65535. In order to group operations, one may use brackets.

A=(B+C)* (D-E)

In thefollowing table all the supported arithmetic operators are listed.

Operator Description

Operator Description Operator Description
+ summation ABS absolute value of a humber
- subtraction COS cosine of an angle
* multiplication DCD bit decoding

value of the digit for a

** the result is in higher 16 bits DIG decimal number

*/ the result is in middle 16 bits MAX maximum of a number

Basic for PIC Microcontrollers 22

/ division MIN minimum of a number
// remainder NCD priority coding
<< left shift REV bit reversing
>> right shift SIN sine of an angle
= assignment of value SQR square root of a number
Syntax: LO = W1 * 100
L1 = W1 ** W2
L2 = W1 */ W2

Description: | PIC BASIC pro does not support directly the work with the 32-bit numbers. It is usual to
present a 32-bit variable as a two 16-bit variables. Operator '*' reverts lower 16 bits of a
32-bit result. Operator '**' reverts higher 16 bits of a 32-bit result. These two operators
can be used in a combined way for computing 16x16 multiplications in order to produce

32-bit results.

Example: LO war long
W1 wvar word
W2 war word

Main:
LO = 'WwW1 * 100 "Multiplies value W1 with 100 and
" stores the result in lower 16 bits of LD
LO = w1l #3100 ' Multiplies value W1 with 100 and
" stores resultin 16 higher hits of LO
LO = W1 # 7 w2 ' Reverts the 16 middle hits of the result
Loop: goto Loop
EMD
Syntax: W0 = W1 /100

W2 = W1 // 100

Description: | As it is the case with multiplication, the operation of division is done over the 16 bit

operands. Operator '/' reverts 16-bit integer result while the operator '//' reverts the
remainder.

Basic for PIC Microcontrollers 23

Example: Wi wvar word
Wl var word
W2 wvar word
Main:
Wi = '\Ww1 / 100 ' Divide the walue W0 with 100 and
" store the integer resultin Wi
W2 = \W1 fF 100 ' Rerm ainder stare in W2
Loop: goto Loop
EMND
Syntax: W0 = W0 << 3
W0 = W0 >> 1
Description: | Operators of the shift perform the shift towards left or right from 0 to 15 times. All the
new bits that enter from the side have value 0. These two operators belong to the
operators over the bits.
Example: Main:
WO = W0 << 3 " Shift W0 three places to the left
"{same as multiplication with 8)
WO = W0 > 1 " Shift W0 one place to the right
"{zame as division with 23
Loop: goto Loop
EMND
Syntax: BO = ABS B1
Description: | ABS gives the absolute value of a number. If ABS gets applied to the variable of the BYTE

type greater then 127 (set MSB) the result is 256. If the ABS gets applied to the variable
of WORD type greater then 32767 (the bit set is of the biggest weight - MSB) result is
65536.

Basic for PIC Microcontrollers 24

Example: BO var byte
B1 war byte
Main;
B0 = ABSBE1 ' thsolute value of B1 store in BO
Loop: goto Loop
EMND
Syntax: BO = COS Bl
Description: | COS reverts the 8-bit value of the cosine. The result is in the second complement (i.e.
within the range -127 to 127). For that reason it is necessary to use the lookup table in
order to determine the result (cosine of an angle goes in the binary range between 0 and
255 in contrast with usual 0 to 359 degrees).
Example: BO war byte
B1 war byte
B2 wvar byte
Main;
BO = COSB1 ' 8-bit value of cosine B1 store in BO
" {index of Lookup table)
Lookup BO, [constant to determine_cosine], B2
Y After this instruction the true value of
' cosine is stored in B2
Loop: goto Loop
END
Syntax: BO= DCD N
Description: | DCD gives the decoded bit value of the operand whose value is in the range within 0-15.

If the operand is 0 then the zeroth bit of the result 1, and if the operand reads as 7, the
seventh bit of the result is 1.

Basic for PIC Microcontrollers 25

Example: BO var byte
Main:
BO = DCD 2 ' Contents BO is 300000100
Loop: goto Loop
EMD
Syntax: W = W1 DIG N

Description: | DIG furnishes the value of the digit of a decimal number. The number whose digits are
looked for is 0-3 where 0 is a last right digit i.e. digit of the smallest weight (it is most
often used for the work with seven-segment digits for extraction of the digits to be

displayed).
Example: BO war byte

Bl war byte

Main:
Bl = 5843
BEO=B1DIGO ‘' Contents BO is 3
BEO=B1DIG 1 ' Contents BO is 4
BO=8B1DIG 2 ‘' Contents BO is 8
BO=8B1DIG 3 ‘' Contents BO is 5

Loop: goto Loop
EMD

Syntax: BO = B1 MAX 100
BO = B1 MIN 100

Description: | The operator's maximum and minimum are used whenever it is necessary to revert one
out of two values that are being compared. If those numbers are for example 100 and
200 operator Max will revert the value 200 and operator Min, value 100. To the difference
from the operators "bigger then" and "less then" they revert the entire value and not only
the quantification whether some value is smaller or bigger then the other.

Basic for PIC Microcontrollers 26

Example: BO war byte
B1 war byte
Main:
BO =B1MAX 100 *'BOIis either 100 or B1 unless B1
" contains the value bigger then 100
BO =B1MIN 100 ‘' BOIs either 100 or B1 unless B1

L

contains the value smaller then 100

Loop: goto Loop
EMND

Syntax: BO = NCD %01001000
BO = NCD %00001111

Description: | NCD furnishes the value that is coded with the priority code. That gives the position of the
first unit, which it encounters from the left side. If the operand is 0 the result is 0 as well.

Example: BO war byte

Main:
BO = WNCD 201001000 " Contents BO is 7
BO = NCD 900001111 " Contents BO is 4
Locp: goto Loop
END

Syntax: BO = %10101100 REV 4

Description: | REV reverts the order of the lowest bits of the operand. The number of the bits that can
be reverted goes from 1 to 16.

Example: BO war byte
Main:
BO = 210101100 REVY 4 ' Contents BO is 910100011

Loop: goto Loop
EMND

Basic for PIC Microcontrollers 27

Syntax: BO = SIN B1
Description: | SIN reverts the & bit value of the sine. The result is in the second Complement (i.e.
within the range -127 to 127). For that reason it is necessary to use the lookup table in
order to determine the result (sine of an angle goes in the binary range between 0 and
255 in contrast with usual 0 to 359 degrees).
Example: BO war byte
Bl war byte
B2 wvar byte
Main:
BO = SIN B1 ' 8-bit value of sine B1 store in BO
" {index of Lookup table)
Lookup BO, [constant to determine_sine], B2
" After this instruction the true walue of sine is
‘' stored in B2
Loop: goto Loop
END
Syntax: BO = SQR W1
Description: | SQR reverts a value of a square root. Result is stored into the variable of BYTE type.
Example: BO war byte

YWl war word

Main:

BO = SQR W1 " Sguare root of W1 store into BO
Loop: goto Loop

EMD

Basic for PIC Microcontrollers 28

One of the more important properties of higher programming languages is their capacity to go down to the lower level i.e. the level of
the assembler. Bit operators furnish the access to the registers and memory of a microcontrollers at the level of asingle bit. Operators
supported by the language PIC BASIC are given in the table below:

Bit operators

Operator Description
& Logical AND over the bits
| Logical OR over the bits
n Logical XOR over the bits
~ Logical NOT over the bits
&/ Logical NAND over the bits
|/ Logical NOR over the bits
~N/ Logical NXOR over the bits

The value result of the expression depends on the fact which of the listed logical operationsis executed over the bits of the operand. In
that way, it is possible to extract, delete, set or invert the certain bit of the operand.

Examplel:
BO = B0 & %00000001

The upper instruction extracts the value of the lowest bit of the variable BO. When the logical "AND" is performed with the zero, there

will be 0 at the position of a corresponding bit (so that all the bits 1-7 will be zeroes). The value will depend on bit 0 in the variable BO
andif itis"0", thevalue of variable BOwill be"0" andif itis"1" the value of BO will accordingly be"1".

Example2:
B0 =B0 & %00000100

The upper instruction sets bit2 in the variable BO. When thelogical "or" is performed with the unity the result is aways equal to "1"
regardless of the state of the corresponding bit from BO.

Example 3:

BO = B0 & %00000010

The upper instruction invertsthe bit 1 in variable BO. If the bit was "1" then it turnsinto "0" and vice versa. The other logical
operators are used only rarely so there's no need for their detailed explanation.

The expressions that contain the operators of comparison give after having compared the two operands the result true or false. If the

expression of comparison istrue then the instruction to be executed isthe one on the | ft side, otherwise the execution of the program
continues with the next instruction. The operators of comparison are shown in the table below:

Basic for PIC Microcontrollers

Operators of comparison
Operator Description
= or == equal
<> or I=| not equal
< less then
> bigger then
<= less then or equal
>= bigger then or equal

These operators are most often used in examination of the conditions by the instructions such as IF...THEN.

Example:

If Seconds = 60 then minutes = minutes + 1
Seconds = Seconds+ 1

29

If thevariable" Seconds" equals 60 the condition of the comparison istrue and the instruction "Minutes=Minutes+1" will be executed

then. Unlessthe expression is not true the instruction " Seconds=Seconds+1" will be executed instead.

Logical operators serve for the operations over the variables, which take two possible values 0 or 1. These values may well be

interpreted as"condition isfulfilled" what correspondsto state "1" and "condition is not fulfilled" which corresponds to the state "0".
They are used in the very same way as the operators of comparison within the frame of theinstruction IF... THEN. Thelist of the

logical operatorsis shown in the table below.

Logical operators

Operator Description
AND or && Logical AND

OR or || Logical OR
XOR or AN Logical XOR

NOT Logical NOT

NOT AND Logical NAND

NOT OR Logical NOR

NOT XOR Logical NXOR

Examplel:

If AOr B THEN GOTO L&

Basic for PIC Microcontrollers 30

If the conditionisfulfilled, i.e. if at least one of the operands A or B equal to one, then the program jumps to the label Lab.
Example2:
IF (Seconds>59) And (Minutes>59) THEN Hours=Hours+1

The conditions may be complex aswell. Separating into the brackets is obligatory otherwise the result can be very unpredictable.

Basic for PIC Microcontrollers 31
Chapter 4

Introduction

41 @ 4.17 GOSUB 4.33 LOOKUP2 4.49 RETURN
4.2 ASM..ENDASM 4.18 GOTO 4.34 LOW 4.50 REVERSE
4.3 ADCIN 4.19 HIGH 4.35 NAP 4.51 SELECT-CASE
4.4 BRANCH 4.20 HSERIN 4.36 OUTPUT 4.52 SERIN

4.5 BRANCHL 4.21 HPWM 4.37 OWIN 4.53 SERIN2
4.6 BUTTON 4.22 HSEROUT 4.38 OWOUT 4.54 SEROUT
4.7 CALL 4.23 I2CREAD 4.39 PAUSE 4.55 SEROUT2
4.8 CLEAR 4.24 12CWRITE 4.40 PAUSEUS 4.56 SHIFTIN
4.9 CLEARWDT 4.25 INPUT 4.41 POT 4.57 SHIFTOUT
4.10 COUNT 4.26 IF-THEN-ELSE 4.42 PULSIN 4.58 SLEEP
4.11 DATA 4.27 LCDOUT 4.43 PULSOUT 4.59 SOUND
4.12 DTMFOUT 4.28 LCDIN 4.44 PWM 4.60 STOP

4.13 EEPROM 4.29 {LET} 4.45 RANDOM 4.61 SWAP

4.14 END 4.30 LOOKDOWN 4.46 RCTIME 4.62 TOGGLE
4.15 FREQOUT 4.31 LOOKDOWN?2 4.47 READ 4.63 WRITE

4.16 FOR-NEXT

4.32 LOOKUP

4.48 READCODE

4.64 WRITECODE

4.65 WHILE-WEND

All the programs regardless of the fact how complicated or simple they may be are nothing else but a strict flow of the executions of
instructions.

Instructions of branching are used in program for the decision-making (in which one of two or more program paths is being chosen).
The basic instruction of branching in PIC BASIC language isinstruction if: Thisinstruction has several variations that furnish

necessary flexibility required for the realization of the logic of the decision-making (these variations comprise the use of termelse and
insertion of theinstructions).

Instructions of repeating give the possibility of repeating one or more single instructions. The conducting expression determines how
many times the repetition will be performed. The set of those instructionsis composed of WHILE ... WEND and FOR ... NEXT.

Instructions of jump serve to change the flow of the program execution. The basic instruction of jump, GOTO, transfersthe

execution of the program to asigned instruction in amain program or inside subroutines. Other instructions of jump are BRANCH,
BRANCHL, CALL, GOSUB, RETURN (these instructions are unavoidable in programs but their use is subject to certain restrictions).

Instructions of access to the peripheral devices facilitate the programmer's job. Now programmer can concentrate on the essence of
the program he set out to solve, avoiding unnecessary waste of time in writing routine for LCD display or some other peripheral
device heusesin his set. The set of instructionsis such to satisfy the large part of needsin the design of even the most complicated
microcontrollerssystems.

Basic for PIC Microcontrollers 32

Inserts one programming line of assembler code

Syntax:

@ assembler's instruction

Description

If used at the beginning of the line @ enables free-style combining of the assemblers
code and PIC BASIC code. Instruction @ can be used for insertion of the libraries written
in assembler as well.

It should be taken notice that the further access from assembler towards variables works

through the lower dash added to the variables name. In an example below, the variable
BO is used as_BO0 in assembler programming line.

Example:

@include "some_asm_program.asm" ' inserts an assembler code library
BO var byte

Main :

@ bsf_BO, 7 ' sets the seventh bit of variable BO
Loop : goto Loop

end

Inserts the block of assembler instructions

Syntax:

ASM
/

assembler instructions

/
ENDASM

Description

ASM and ENDASM instructions give the information that the code between ASM and
ENDASM assembler type. Maximal size of the assembler code depends on the size of the
programming memory of a microcontroller. In case of a PIC16F877 microcontroller the
maximal value of an assembler code is 8K.

Example:

Basic for PIC Microcontrollers 33

Main :
asm ' Beginning of asm part of the program
bsf PORTA, 0 ' set RAO to "1"
bcf PORTB, 3 ' set RB3 to "0"
endasm ' End of asm part of the program

Loop : goto Loop

end

Write the values from the input of the internal AD converter

Syntax:

ADCIN channel, variable

Description

ADCIN performs A/D conversion of an input analogue signal in microcontrollers that have
A/D converter built in chip (i.e. PIC16F877). The value read in is stored into a designated
variable. Before use of ADCIN instruction the appropriate TRIS register must be initiated
so that the given is designated input one. Beside that in ADCON1 register one has to set
the input pins for analogue working regime, format of the results and tact of A/D
converter.

Example:

DEFINE ADC_BITS 8 ' Converted result will have 8, 10 or 12 bits
DEFINE ADC_CLOCK 3 ' Clock for A/D converter
DEFINE ADC_SAMPLEUS 10 ' Sampling time expressed in us
BO var byte
Main :
TRISA = $FF " All pins of port A are input

ADCON1 =0 ' PORTA is analog

Basic for PIC Microcontrollers A

adcin 0, BO ' Read the channel 0 and store the result into variable BO
Loop : goto Loop

end

Jump onto label depending on given index

Syntax:

BRANCH index, [labell {label...}]

Description

Depending on the specified index, jump is performed onto the corresponding label. For
instance if the index equals zero, execution continues from the first label indicated on the
list on, and if it equals 1 from the second indicated one - and so on. In case that value of
index is equal or even greater than the total number of labels, no action is undertaken
and the execution of the program continues directly with the next instruction in a row.

In the example below the same effect could be achieved with instruction if - then.
if BO=0 then lab1l

if BO=0 then lab1
if BO=0 then lab1

Example:

BO var byte
Main :
branch BO, [labl, lab2, lab3]

Loop : goto Main

labl : ' Labels where the program execution resumes after
lab2 : ' the jump initiated by instruction BRANCH
lab3 :

end

Jump to the label in second code segment

Basic for PIC Microcontrollers 35

Syntax:

BRANCHL index, [labell {label...}]

Description

BRANCHL (BRANCH long) is a instruction quite similar to BRANCH. The only difference is
that BRANCHL can realize jump onto the location situated on the second code segment.
BRANCHL instruction creates the code approximately two times greater than one created
by BRANCH, so that in case that the whole code of a program is in one single code
segment or occupies less then 2K of memory - use of BRANCH is recommended.

Example:
WO var word
Main :
branchl WO, [lab1l, lab2, lab3]
Loop : goto Loop
lab1 : ' Labels where the program execution resumes after
lab2 : ' the jump initiated by instruction BRANCHL
lab3 :
end
Reads the state of button on input pin
Syntax: BUTTON Pin, State, Delay, Speed, Variable, Action, Label

Description

The Button instruction eliminates the influence of contact flickering due to the pressing on
the button (debouncing), what could be interpreted by the program as the pressing of the
button more then one time instead of only once. Beside this function, instruction Button
secures the function of auto-repeat which enables execution of determinate instruction as
long as we keep pressing the button. The time between consecutive execution of two
instructions is specified with the argument Speed.

Pin - Pin on which we have button.

State - State of the pin when the button is pressed (0...1).

Delay - Countdown time before we initiate auto-repeat (0...255). At value 0, there will be
no auto-repeat. At value 255, the debouncing will be effectuated but without auto-repeat.

Speed - Time of auto-repeat (0..255).

Basic for PIC Microcontrollers 36

Variable - Auxiliary variable of byte type (which must be defined at the very beginning of
program is used for delay and to repeat the countdown. Before any start of the button
instruction it should be initiated on 0.

Action - State at which the jump onto the indicated label is to be effectuated (0 if the
button is not pressed, 1 if it is). Simply put, if it is "0" it will jump if the button is not
pressed, and if it is 1 it will jump if it is not pressed.

Label - The execution goes on from this label if the Action is correct.

button PORTB.1,0,100,10,B0,1,lab

If the button on pin is pressed, RB1 jumps on the label /ab. Button is considered as a
pressed on if there is a logical "0" on the RB1 pin.

button PORTB.1,0,100,10,B0,0,lab1

If the button on pin is not pressed, RB1 jumps on label /labl. Button is considered as a
pressed on if there is a logical "0" on the RB1 pin.

button PORTB.1,1,100,10,B0,1,labl

If the button on pin is pressed, RB1 jumps on label /abl. Button is pressed if there is a
logical "1" on pin RBL1.

Example:

The example below will at each pressing of the button, which is connected to RAO, change
the state of pin. If the diode is tied to the same pin the effect of the twinkling of the diode
will be manifested.

DEFIME BUTTOMN_PALUSE 50

TRISA = 0
TRISBE = 2E5&5
BO wvar byte " auxiliary variable
Main:
BO =10 " Initialization of BO
button PCORTE.O,0,100,10,80,1,led
gota Main " Repeat the loop
led:
toggle PORTA.Q ' Change the pin state
goto Main
end

It calls assemblers subroutine

Basic for PIC Microcontrollers 37
Syntax: CALL /abel
!)escrlptlon It executes the subprogram under the name Label in the language of assembler.
Example: @include “init.asm"
Main
call init_sys
Loop: goto Loop
end
Sets the value of every variableto O
Syntax: CLEAR

Description

CLEAR sets the entire RAM registers in all databanks to zero. It also means that all the
variables will simultaneously be set to zero.

Example: clear ' Clear all the variables in R AM
Main:
gota Main
end
Resets the watchdog timer
Syntax: CLEARWDT

Description

Resets the watchdog timer

Example: clearwdt *Clear WDT
Main:
goto Main
end
Counts the impulses on input pin
Syntax: COUNT Pin, Period, No_Impulses

Basic for PIC Microcontrollers 38

Description

Counts the impulses that appear on a specified pin during the time interval defined with
the Period variable. The nhumber of the impulses is stored into the No_Inpulse variable.
Pin is automatically designated as input. Period is specified in milliseconds. If the
oscillator is a 4Mhz one, check of a pin state (status) is effectuated every 20
microseconds.

In this way, we can easily measure the frequency of a signal simply by determining
number of it's impulses in one second (1000ms). Highest frequency measurable with
4MHz oscillator is 25kHz, while 20MHz oscillator measures up to 125kHz.

Example: WO var byte ' The supposition is to have not more
" then 255 impulses
TRISA = $FF *Port & is an entrance one
Main:
count PORTA.O,1000,'W0 " Counts the impulses in the 1s time
“interval that will appear on the entrance pin
POETE ='W0 " Show the contents of W0 on the diodes of port B
goto Main
end
Effectuates writing into the EEPROM at the first programming
Syntax: {label} DATA {@pocadr}, constant, constant..

Description

DATA stores constants into the internal EEPROM at the first writing of any microcontroller
code. If the initial address from which the storing begins, constants will be stored from
the EEPROM'S zeroth one. Constant may be numerical or character. If it is necessary to
save the constant occupying two bytes an official word "word" must be put before that
constant (in the adverse case, only the lower byte would be saved.) Instruction DATA is
applicable only in those PIC microcontrollers such as PIC16F84 or 16F87X series, which
possess the built-in EEPROM memory inside the chip. Apart from the internal EEPROM in
PIC microcontrollers exists the option of connecting an additional external EEPROM
through the 12C highway. Such mode of connecting in practice in the PIC microcontrollers
that don't possess internal EEPROM memory of their own or when its size is inadequate.
EEPROM memory has that good property that it doesn't change its value in case of a
power shortage. Besides, the possibility of unwanted storing is reduced so that the
EEPROM memory is often used to conserve some values of prime importance. For
inwriting and reading of EEPROM memories during the operations of microcontroller,
instructions WRITE and READ are used.

Basic for PIC Microcontrollers

39

Example:

data @5,1,2,3

Writes in the wvalues 1, 2, 3 on the locations 5, 6 and 7 in EEPROM memaory.

data word $1234

Writes in the values $12 AND £34 on the locations 0 and 1 in EEPROM memary.

Generates the tone-dialing signal on the output pin

Syntax:

DTMFOUT Pin, {Onms, Offms,} {Ton{, Ton...}}

Description

Instruction DTMFOUT produces the tone encountered for example in the phones with tone
dialing. Such characteristic tone is composed of two signals of different frequencies which
serves for the detection of the pressed button. Pin is thereby designated output. The
parameter "Onms" represents the duration time of each dial in milliseconds, while "Offms"
is the duration of the brake between two consecutive tones. If no value of duration of
either tone or brake is set, it goes without saying that "Onms" lasts 200ms and "Offms"
50ms. Tones are numerated 0-15. Those 0-9 are identical to those on a phone dial. Tone
10 represents button *, tone 11 button #, while to the tones 12-15 correspond the

additional buttons A-D.

1K 1K
[#0 pin 1 + 1 » To amplifier
—— 1uF — 1uF

In order to obtain the desired sinusoidal signal at the output, the installation of a sort of
filter is required.

Example: TRISE = %FF " all the pins of port A are exit ones
Main:
dtmfout PORTE.1,[2,1,2] ‘' Generate DTMF on REB1
loop: goto loop
end
Sets the initial contents for programming EEPROM
Syntax: EEPROM {@/ocation, } constant {, constant}

Description

In sets constants into the consecutive bytes of the EEPROM memory. If the optional value

Basic for PIC Microcontrollers 40

of the location is omitted, the first EEPROM instruction starts to store the constants
beginning with an address 0, and the next instructions place the values on the following
locations. If the value of location is stipulated, the values are written starting from that
very location.

Parameter "Constant" may be number or the sequence of constants. If "word" is not

quoted before constant that is being written in, only the bytes of lowest weights are
saved. The sequences of are stored as consecutive bytes of ASCII values.

The instruction "EEPROM" is operative on only those PIC Microcontrollers, which possess
EEPROM or FLASH programming memory built in the chip. The date are saved in the
EEPROM space when the programming of microcontroller is definitely finished.

For inwriting and reading of EEPROM memory in the course of the operation of the
microcontroller, the instructions WRITE and READ are being used.

Example:

EEPROM @5,1,2,3

Writes in the values 1, 2, 3 on the locations 5, 6 and 7 in EEPROM memary,

EEPROM word $1234

Writes in the wvalues $12 AND £34 on the locations 0 and 1 in EEPROM memaory.

Marks the logical end of the program

Syntax:

END

Description

Stops the further execution of the program and enters into the low energy consumption
mode executing continuous SLEEP instructions in a loop. Instruction END should be put at
the end of every program.

Description

Example: Mair:
goto Main
end " The end of the program
Generates signal of a specified frequency on output pin
Syntax: FREQOUT Pin, Onms, Freql, Freq2

FREQOUT generates the signals in the PWM form (Pulse Width Modulation) within the

frequency range from 0 to 32767Hz on the pin defined in parameter "Pin" and with the
duration specified in parameter "Onms".

Basic for PIC Microcontrollers

41

FREQOUT works best with a 20 MHz oscillator (while it is more difficult to filter the signal
for the lower frequencies). "Onms" represents the duration of the signal in milliseconds.

1EG 1E0
140 pin 1 * —1 = To amplifier

— 1uF — _ 1UF

In order to obtain the desired sinusoidal signal at output, the installation of a sort of filter
is required.

Example:

freqout PORTE.1,2000,1000

Generates the signal of the frequency 1000Hz in duration of 25 at the first pin of the port,

freqout PORTE.1,3000,1000,500

Generates the signal of frequency 1000Hz and S500Hz in duration of 35 at the first pin of t

Repeating of the program segment

Syntax:

FOR Index = Start TO End {Step {-} Inc }
{ instructions,

instructions }
NEXT {Index}

Description

The instructions of repeating one or more instructions. The conducting expression will
determine how many times will repeating take place. "Index" is usually the variable
employed for the control of how many times is for...next loop executed. If the parameter
"Step" is not specified, it is understood that the variable "Index" is increased by one.

(Index = Index + 1).

Example:

auxiliary variable
the program turns on and off
the diodes at port B with 1s

pause 200 times.

auxiliary variable

Basic for PIC Microcontrollers

42

the program turns on and off
the diodes at port B with 1s

pause 100 times

auxiliary variable
the program turns on and off

the diodes at port B with 1s

pause 900 times

Basic for PIC Microcontrollers 43
INSTRUCTIONS (2/4)
Introduction
4.1 @ 4.17 GOSUB 4,33 LOOKUP2 4.49 RETURN
4.2 ASM..ENDASM 4.18 GOTO 4.34 LOW 4.50 REVERSE
4.3 ADCIN 4.19 HIGH 4.35 NAP 4.51 SELECT-CASE
4.4 BRANCH 4.20 HSERIN 4.36 OUTPUT 4.52 SERIN
4.5 BRANCHL 4.21 HPWM 4.37 OWIN 4.53 SERIN?
4.6 BUTTON 4.22 HSEROUT 4.38 OWOUT 4.54 SEROUT
4.7 CALL 4.23 I2CREAD 4.39 PAUSE 4.55 SEROUT?
4.8 CLEAR 4.24 I2CWRITE 4.40 PAUSEUS 4,56 SHIFTIN
4.9 CLEARWDT 4.25 INPUT 4.41 POT 4,57 SHIFTOUT
4.10 COUNT 4.26 IF-THEN-ELSE 4.42 PULSIN 4.58 SLEEP
4.11 DATA 4.27 LCDOUT 4.43 PULSOUT 4.59 SOUND
4.12 DTMFOUT 4.28 LCDIN 4.44 PWM 4.60 STOP
4.13 EEPROM 4.29 {LET} 4.45 RANDOM 4.61 SWAP
4.14 END 4.30 LOOKDOWN 4.46 RCTIME 4.62 TOGGLE
4.15 FREQOUT 4.31 LOOKDOWN?2 4.47 READ 4.63 WRITE

4.16 FOR-NEXT

4.32 LOOKUP

Calls BASIC subroutines

4.48 READCODE

4.64 WRITECODE
4.65 WHILE-WEND

Syntax: GOSUB /abel

Description: | Executes the PBP instructions of the program which are situated between label "label" and
instruction RETURN. When program encounters the RETURN, the execution of the
program goes on with the instruction line that follows GOSUB instruction. Part of the
program code between the label and the RETURN instruction is commonly called
subroutine.

Subroutine can be "nested". In other words, it is possible that the subroutine calls some
other program. Such programming should n't go beyond four levels depth because of the
finite size of the PIC microcontroller stack.

Basic for PIC Microcontrollers 44

Example: Main:

L

gosub Blink Call subroutine Blink

Loop: goto Loop

Blink: " Subroutine Blink
PORTE=%FF " Turn on the diode on port B
Pause 1000 ‘Brake 1s
PORTE=%00 " Turn off the diode an port B
Pause 1000 "Brake 1s
Return
End

Continues the execution of the program on a certain label

Syntax: GOTO /abel

Description: | The execution of the program continues with the instruction line following the label
"label". It is not recommended to use this command too often, because over-labeled

programs are generally less intelligible.

Example: Mair;
goto Blink "*Jump on label Blink
Blink: " Subroutine Blink
PORTEB=%FF " Turn on the dicde on port B
Pause 1000 " Brake 1s
PORTEB=%00 " Turn off the diode on port B
Pause 1000 " Brake 1s
goto Main
End

The program above does exactly the same thing as the previous one, but without GOSUB
instruction.

Setsalogical "1" on the output pin

Syntax: HIGH Pin

Basic for PIC Microcontrollers 45

Description: | Sets the appropriate pin on the high level. Pin is thereby automatically designated output.
Example: Mair:
high PORTA.O "Pin RAC set on the high level
Loop: goto Loop
End
Hardware asynchronous serial inp ut
Syntax: HSERIN {Error, }{Timeout, Label, }[Modifier(,...)]
Description: | HSERIN receives one or more serial data. It can be used with PIC microcontrollers which

have hardware supported serial communication, i.e. in those which have hardware USART
(e.g. microcontroller 16F877). The parameters of serial transfer are determined at the
beginning of the program with the following DEFINE directives :

DEFIME HSER_RCSTA 90h ' Setting of a receiving register
DEFIME HSER_T®STAZ0Oh " PSetting of a emitting register
DEFIME HSER_BAUD 2400 "Flow in bauds

DEFIME HSER_SPBRG 25 " Direct setting of the SPBRG register

HSERIN operates with 4 MHz oscillators by default. If the microcontroller is connected
with an oscillator of a different frequency it has to be specified :

DEFINE OSC tact ‘' Specific oscillator frequency

Putting the parameters "Timeout" and "Label" enables the continuation of the program
even with receiving no character in the course of a "Timeout" interval (specified in
milliseconds). Format of the serial data 8N1 (8 bits of the data, without a parity bit and
with only one stop bit). Some other formats, such as 7E1 (7 bits of data, parity bit and 1
stop bit) can be used with the previous changes through DEFINE at the beginning of
program.

DEFINE HSER_EVEN 1 ' Only when we want to check the parity.
DEFINE HSER_ODD 1 ' Only when we want to check the non-parity.

The program may also contain the optional label "Error" at which the program jumps in
case of error in transfer or the violation of parity. Label "Error" is used only if the check of
parity/non-parity is in advance enabled with the corresponding DEFINE directions. The
serial transfer is done by hardware so that for an adapting on RS-232 an additional
inverting driver is necessary. Modifiers in HSERIN are the same as by the command
SERIN2.

Modifier How it works
BIN{1..16%} Takes binary digits
DEC{1..5} Takes decimal digits

Basic for PIC Microcontrollers 46

HEX{1..4} Takes hexadecimal digits

SKIP n Doesn't take next n characters

Takes the sequence of n characters that ends with the

STR ArrayVar\n{\c} character c (optional)

WAIT () waits for character sequence
WAITSTR ArrayVar{\n} waits for a string

Example:

BO var byte
W1 var word

Main:
hserin [B0, dec Ww1] ‘Take dec. digit from serial line
goto Main
end

Generates PWM signal on the microcontroller pin

Syntax:

HPWM Channel,Relation_on_off, Frequency

Description:

Command uses the hardware PWM on the microcontrollers who possess it for the
generation of the PWM signal.

The parameter "channel" defines the exact PWM channel that is to be used. In the two
channel microcontrollers, the parameter "frequency" must be identical on both of them.

The parameter "Relation_on_off" defines the relation between on and off signals on the
pin. Value 0 sets the pin to always off, while 255 sets it to always on. All other values in
the interval 0~255 define the appropriate ODNQOS of on and off signals on the pin (for
example, value 127 sets 50% on and 50% off signal).

Parameter "Frequency" defines the frequency of the PWM signal (highest possible
frequency for any oscillator is 32767 Hz) which depends on oscillator used. Lowest
frequency depends on oscillator used.

If not specified otherwise, PWM generates 0 timer by default.

Example:

DEFINE HPWM2_TIMER 1 ' second channel uses timer 1

hpwm 2, 64, 1000 ' 25% PWM on 1kHz

Hardware asynchronous serial output

Basic for PIC Microcontrollers 47

Syntax:

HSEROUT [Item{,Item...}]

Description:

HSEROUT sends one or more serial data and is used in the PIC microcontrollers that have
hardware supported serial communication (hardware USART). Parameters of serial
transfer are determined by with the following DEFINE directives:

DEFINE HSER_RCSTA 90h ' Setting the receiving register

DEFINE HSER_TXSTA 20h ' Setting the emitting register

DEFINE HSER_BAUD 2400 ‘' Baud rate

DEFINE HSER_SPBRG 25 ' Direct setting of SPBRG

When calculating transfer rate, HSERIN assumes that microcontroller works with the

4MHz oscillator. If different oscillator is used, new frequency must be specified with the
following directive:

DEFINE OSC ' Specific oscillator frequency

Format of serial data is 8N1 - 8 data bits, with no parity bit and with 1 stop bit. Some
other formats, such as 7E1 (7 data bits, parity bit, 1 stop bit) or 701 (7 data bits, non-
parity bit, 1 stop bit) may be used with the following DEFINE directives at the beginning
of the program:

DEFINE HSER_EVEN 1 ' Only when we want to verify the parity
DEFINE HSER_ODD 1 ' Only when we want to verify the non-parity

Serial transfer is hardware based, so you might need an additional driver for adjusting to
RS-232 (MAX232).

Modifier Sends
{I}{S} BIN{1.16} binary number
{I}{S} DEC{1..5} decima number
{I}{S} HEX{1..4 hexadecimal number
REPc/n character ¢ repeated ntimes
STR ArrayVar {\n} n character string

Example:

BO var byte
BO =4
Main :

hserout [dec BO, 10] ‘' send decimal number from variable BO and constant

Basic for PIC Microcontrollers 48

10
Loop: goto Loop

end

Reading data from 12C peripheral device

Syntax:

I2CREAD Data, Frequency, Control_byte, {Address,} [Variable {, Variable...}]{,Label}

Description:

Sends control and address data via I2C lines and receieved bytes are stored into
"Variable".

I2CREAD and I2CWRITE can be used for reading and writing data to peripheral units.
These instructions work with I2C master byte in read and write modes and can be also

used for communication with other devices with 12C interface, such as temperature
sensors, A/D converters, etc.

Higher 7 bits of control byte contain control code for chip selection or extra information
on addresses, depending on device. The lowest bit is flag indicating the current mode -
read or write.

For example, for communicating with 24LC01B, requested address is 8-bit, control code is
%1010 and chip select is unused, so that control byte would be %10100000 or $AO0.

Formats of control bytes for several other serial EEPROMs are given in the table below:

EEPROM Capacity Control word Address size
241.C01B 128 bytes %1010xxx0 1byte
241.C02B 256 bytes %1010xxx0 1byte
241.C04B 512 bytes %1010xxb0 1 byte
241.C08B 1K bytes %1010xbb0 1byte
241.C16B 2K bytes %1010bbb0 1byte
241.C32B 4K bytes %1010dddO 2 bytes

241 C65 8K bytes %1010dddO 2 bytes

bbb = block selection
ddd = device selection bits
xxx = has no effect

If 2-byte data (WORD) is received, higher byte is received first, and lower thereafter. For

Basic for PIC Microcontrollers 49

string transfer, STR goes before the name of the string, and number of clocks after \ .
a var byte[8]
I2CREAD PORTC.4, PORTC.3, $a0, 0, [STR a\8]

If optional label is used, program will jump to the label if there is no response signal over
the I2C interface. Standard transfer rate (100kHz) is achieved with 8MHz oscillator. For
higher transfer rate (400kHz) 20MHz oscillator is used. If slower oscillator is used for the
transfer, following directive should be used :

DEFINE 12C_SLOW 1

In order to have bipolar I12C clock interface and not an open collector, following DEFINE
directive should be used:

DEFINE 12C_SCLOUT

Operating any peripheral units with I2C communication demands that you read supplier
manuals and specifications.

Example:

BO var byte
addr var byte
cont con %10100000 * Control address of EEPROM
addr = 17 * Data address is 17
Main:
I2CREAD PORTA.O, PORTA.1, cont, addr, [BO] ' Get data to variable BO
Loop: goto Loop

end

Writing data to 12C peripheral device

Syntax:

I2CWRITE Data, Frequency, Control_byte, {Address,} [Vari {, Vari...}]{,Label}

Description:

I2WRITE sends control and address data via I2C interface. We define 8-bit or 16-bit
address while defining variable put to address parameter (in order to correctly define
address size, we must have accurate information on device we are communicating with).

Basic for PIC Microcontrollers 50

If peripheral device is serial EEPROM, it is necessary to wait for 10ms (depending on
device) until writing has ended. New communication with device is possible after 10ms
have elapsed. If new data write occurs before the last one has ended, request will be
ignored. Address size is either 1 or 2 bytes, depending on device connected. A problem
may occur when trying to write multiple bytes in one instruction, depending on specific
EEPROM. Such instances can be avoided if, instead of EEPROM, we use devices without
the need for pause between writing. If 2-byte data (WORD) is sent, higher byte goes first,

then the lower. For string transfer, STR goes before the nhame of the string, and number
of clocks after \ .

a var byte[8]
I2CWRITE PORTC.4, PORTC.3, $a0, 0, [STR a\8]

If optional label is used, program will jump onto the label if there is no response signal
over the I2C interface. Standard transfer rate (100kHz) is achieved by 8MHz oscillator.
For higher transfer rate (400kHz) 20MHz oscillator is used. If slower oscillator is used for
the transfer program should contain the following directive:

DEFINE I2C SLOW 1

In order to have bipolar I12C clock interface and not an open collector, following DEFINE
directive should be used:

DEFINE I2C_SCLOUT

Operating any peripheral units with I2C communication requires that you study the
supplier manual and specifications.

Example:

BO var byte

addr var byte

cont con %10100000 * Control address of EEPROM

Main:
addr = 17 ' EEPROM address where data will be written is 17
i2cwrite PORTA.O0, PORTA.1, cont, addr, [6] ' Write number 6 to address 17
pause 10 ' Wait 10ms until writing is finished
addr =1 ' Set address of writting to 1

BO = 23

Basic for PIC Microcontrollers 51

i2cwrite PORTA.O, PORTA.1, cont, addr, [BO] ' Write value of variable BO to
address 1

pause 10 ' Wait 10ms until writing is finished
Loop: goto Loop

end

Designates 1/0O pin as input

Syntax: INPUT Pin
Description: | INPUT designates the specific pin as input.
Example: Main:
input PORTA.O ' Pin PORTA.OQ is input. Instruction can be substituted with
TRISB.0=1
TRISB.0=1
Loop: goto Loop
end
Conditional program branching
Syntax: IF Expressionl { AND / OR Expression2} THEN Label
{instructions}
ELSE
{instructions}
ENDIF
Description: | Instruction selects one of two possible program paths. Instruction IF is the fundamental
instruction of program branching in PIC BASIC and it can be used in several ways to allow

Basic for PIC Microcontrollers 52

flexibility necessary for realization of decision making logic.

if expression then instruction
endif

S o [
gevpression>— el [NStrUction
\\
M

el

L)

i exit E

The simplest form of instruction is shown on the picture above. Sample program below
tests the button connected to RBO - when the button is pressed program jumps onto the
label "Add” where value of variable “w” is increased. If the button is not pressed, program
jumps back onto the label “*Main”.

Example:

w var byte

Main:
IF PORTB.0=0 THEN Add
goto Main

Add : W=W+1

End

More complex form of instruction is program branching with the EL SE part of instruction.

Basic for PIC Microcontrollers

53

T N

instruction 1

w var byte
Main:
IF PORTB.0=0 THEN Add
ELSE Subtract
ENDIF
goto Man
Add : W=W+1
Subtract : W=W-1

End

Same effect can be achieved directly :

w var byte

if expression then

instruction 1
else
instruction 2
endif
instruction 2

Basic for PIC Microcontrollers 54

Main:
IF PORTB.0=0 THEN W=W+1
ELSE W=W-1
ENDIF
goto Main

End

Prints data on LCD display

Syntax:

LCDOUT Data {, Data...}

Description:

LCDOUT sends the data to the LCD (Liquid Crystal Display). PIC BASIC supports various
LCD models which have Hitachi 44780 controller or compatible one. LCD usually has
either 14 or 16 pins for connection to a microcontroller. If there is character # before
data, ASCII value of every data is sent to LCD. LCDOUT has the same modifiers as the
instruction SEROUT2.

Modifier Sends
{I}{S} BIN{1..16} binary number
{1}{S} DEC{1..5} decimal number
{I}{S} HEX{1..4} hexadecimal number
REPc/n character ¢ repeated ntimes
STR ArrayVar {\n} n character string

Before the first ingtruction is sent to LCD, program should wait for at least half a second for
LCD toinitialize.

LCD display can be connected to PIC microcontrollers by either 4-bit or 8-bit bus. If 8-bit bus
isused, dl of 8 bits must be connected to the same port, while in the case of 4-bit busall 4 bits
must be either in the upper or the lower part of byte. R/W line should be connected to ground
if LCD isused only for data display. PIC BASIC assumes that LCD is connected to specific
pinsif DEFINE directives do not say otherwise. Default is 4-bit bus with lines DB4-DB7
connected to RAO-RA3, RS pin connected to RA4 and E pin connected to RB 3. Also, it is
assumed that LCD is 2x16. For changing any of the default settings, appropriate DEFINE
directives can be used.

Basic for PIC Microcontrollers

55

DEFINELCD_DREG PORTB

DEFINELCD_DBIT 4

DEFINE LCD_RSREG PORTB
DEFINELCD_RSBIT 1
DEFINELCD_EREG PORTB
DEFINELCD_EBIT O
DEFINELCD_BITS 4

DEFINELCD_LINES 2

DEFINE LCD_DATAUS 50

If LCD is connected to some other microcontroller lines it has to be defined with DEFINE
directives, as shown in the following example.

‘ port selection

“initia bit (O or 4) selection in case of 4-bit bus

‘ port Register select

‘ Register Select bit

* Enable port

‘ Enable hit

‘ bussze — 4 or 8 bits

* number of LCD lines

DEFINE LCD_COMMANDS 2000 ‘ command delay in microseconds

‘ data delay in microseconds

Definitions above define 2-line LCD on 4-bit bus on the upper 4 bits of microcont roller port
D. Register Select (RS pin) ison PORTD.2 and Enableison PORTD.3.

Every LCD controller isin charge of certain commands. Commands are sent by instruction:
LCDOUT $FE, $Kod. List of commands is shown in table below.

Command Operation
$FE 1 clear display
$FE, 2 Return home (beginning of thefirst line)
$FE, $0C Turn off cursor
$FE, $0E Underline cursor on
$FE, $0F Blinking cursor on
$FE, $10 Shifting cursor left
$FE, $14 Shifting cursor right

Basic for PIC Microcontrollers 56

$FE, $CO set cursor to the beginning of the second line
$FE, $94 set cursor to the beginning of thethird line
$FE, $D4 set cursor to the beginning of the fourth line
Example:
BO var byte
Bl var byte
Main:
ledout $FE, 1, “Hdlo” ‘ Clear display and print “Hello”
lecdout $FE, $CO * switch to second line
ledout BO ‘ Digplay the value of BO
ledout #B1 * Digplay the value of B1in ASCII code
Loop: goto Loop
end
Reads data from LCD RAM
Syntax: LCDIN {Address,} [Var{, Var...}]
Description: | LCDIN reads the given address of LCD RAM and stores data into a variable. When using
this instruction, LCD Read/Write line must be connected to microcontroller. In case when
LCD is used for data printing exclusively, this line can be connected to a logical zero.
DEFINE directives inform the program about port and pin which Read/Write line is
connected to:
DEFINE LCD_RWREG PORTE ‘ LCD read/write port
DEFINE LCD_RWBIT 2 ‘* LCD read/write bit on port
Example: BO var byte
Main:

Ledin $40, BO ¢ Read data from LCD location $40 and store it into BO

Basic for PIC Microcontrollers 57

L oop: goto Loop

End

Puts the value of the expression into a variable

Syntax: {LET} {Var=Expression}

Description: | LET instruction stores value of the expression into a variable. Expression can be a
constant, variable or value of some other expression. Commonly, the optional command
word LET is excluded.

Example:
let BO=B1* B2+ B3
BO=B1* B2+ B3
The two expressions are identical. The latter expression is missing command word “let”.
Searches the table of constants
Syntax: LOOKDOWN Value, [Const {, Const...}], Var

Description: | Instruction LOOKDOWN searches the list of constants and determines the presence of
given value. If a given value matches some of the constants, index of the appropriate
constant is stored into variable. If the first constant matches our given value, variable is
set to zero. If the second constant from the list matches our given value, variable is set
to one, etc. If our value isn't present in the list, variable remains unchanged. Constants
list can consist of both numerical and character (string) values. Each character of a string
is treated as a separate ASCII value of a constant.

Example: BO var byte

B1 var byte

BO=%f

Basic for PIC Microcontrollers 58

Main:
lookdown BO, (“01234567890ABCDEF’), B1 ‘ convert hexadecima
character from BO to adecima vaue and store it into variable B1
PORTB=B1 ‘ PRIKAZI number on port B diodes
loop: goto loop
End

Searches the table of constants/variables

Syntax:

LOOKDOWNZ2 Search, {Test} [Value {, Value...}], Var

Description:

LOOKDOWNZ2 searches the list of values and determines the presence of given value. If
“Search” value matches some of the “Value” values, index of the appropriate constant is
stored into “Var”.

If “Search” matches the first value of the list, “Var” set to zero. If it matches the second value
of thelig, “Var’ is st to one, ec. If “Search” valueisn't present inthe list, “Var” remains
unchanged.

Optionda parameter “Text” is used for testing if “Search” vaueis grester or lesser than a
certain vaue. If “>” isused, index of the first matching constant is stored to “Var”. List of
values can consist of 16-bit numbers, characters or variables. Every character of astring is
treated as a separate ASCII value of that character (arrays of variables cannot be used with
LOOKDOWN?2 instruction). LOOKDOWN2 generates the code about 3 times greater than
LOOKDOWN instruction does. Thus, when searching the list consisting of 8-bit constants and
strings, use of LOOKDOWN is prefferrable.

Example:

lookdown2 WO, [512, 768, 1024], BO

If vdue of WO is 512 BO will have value of 0. If value of WO is 768 then BO will have vaue of
1, etc.

Basic for PIC Microcontrollers 59

lookdown2 WO, <[10,100,1000], BO

If vaue of WO is4 BO will have value of 0. If value of WO is 200 then BO will have value of 2,
etc.

Gets value from the table of constants

Syntax:

LOOKUP Index, (Constant {, Constant}), Var

Description:

LOOKUP is used for reading values from the table of constants, according to the value of
variable “Index”. If “Index” equals zero, “Var” is set to the value of the first constant. If
“Index” equals one, “Var” is set to the value of the second constant, etc. If “Index” is
equal or greater than number of elements in the Look-up table “Var” remains unchanged.
List of constants can consist of numerical and string constants. Each character of a string
is treated as a separate ASCII value of a character.

Example:

Program below illustrates the use of LOOKUP instruction. for displaying digits on seven
segment displays. Depending on vaue of parameter “Digit”, we get mask for appropriate
value of parameter “mask”.
Digit var byte * value of digit to be displayed
Mask var byte' mask of digit to be displayed
Main:
fori=0to 9
Digit=i

Lookup Digit, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Mask

PORTB=Mask ‘ Send the mask of adigit to port B

pause 500 * delay dlowing to see digits changing

Basic for PIC Microcontrollers

60

next i
goto Main

end

‘ Increasei by one

‘ Repeat the whole program

Basic for PIC Microcontrollers 61
Introduction

4.1 @ 4.17 GOSUB 4.33 LOOKUP2 4.49 RETURN
4.2 ASM..ENDASM 4.18 GOTO 4.34 LOW 4.50 REVERSE
4.3 ADCIN 4.19 HIGH 4.35 NAP 4.51 SELECT-CASE
4.4 BRANCH 4.20 HSERIN 4.36 OUTPUT 4.52 SERIN

4.5 BRANCHL 4.21 HPWM 4.37 OWIN 4.53 SERIN2
4.6 BUTTON 4.22 HSEROUT 4.38 OWOUT 4.54 SEROUT
4.7 CALL 4.23 I2CREAD 4.39 PAUSE 4.55 SEROUT2
4.8 CLEAR 4.24 12CWRITE 4.40 PAUSEUS 4.56 SHIFTIN
4.9 CLEARWDT 4.25 INPUT 4.41 POT 4.57 SHIFTOUT
4.10 COUNT 4.26 IF-THEN-ELSE 4.42 PULSIN 4.58 SLEEP
4.11 DATA 4,27 LCDOUT 4.43 PULSOUT 4.59 SOUND
4.12 DTMFOUT 4.28 LCDIN 4.44 PWM 4.60 STOP

4.13 EEPROM 4.29 {LET} 4.45 RANDOM 4.61 SWAP

4.14 END 4.30 LOOKDOWN 4.46 RCTIME 4.62 TOGGLE
4.15 FREQOUT 4.31 LOOKDOWN?2 4.47 READ 4.63 WRITE

4.16 FOR-NEXT

4.32 LOOKUP

4.48 READCODE

Gets value from the table of constants/variables

4.64 WRITECODE

4.65 WHILE-WEND

Syntax:

LOOKUP2 Index, [Value {, Value...}], Var

Description: | Instruction LOOKUP2 can be used for reading values from the table of vaues by index. If

“Index” equals zero, “Var” attains the vaue of the first dement in the list. If “Index” equals
one, “Var" attains value of the second element in the list, etc. If “Index” is equa or greater
than number of dementsin the Look -up table “Var” remains unchanged.

List of values can consist of 16-bit numbers, characters or variables. Every character of a
string is trested as a separate ASCI| value of that character. Arrays of variables cannot be used
with LOOKUP2 instruction. LOOKUP2 generates the code about 3 times greater than
LOOKUP ingtruction does. Thus, when searching the list consisting of 8-bit constants and
strings, use of LOOKUP is prefferrable.

Example:

lookup2 BO, [256, 1024], WO
For BO=0, WO will have value of 256

For BO=1, WO will have value of 1024

For B0=2,3,... WO will remain unchanged

Basic for PIC Microcontrollers

62

Puts logical zero to output pin

Syntax: LOW Pin
Description: | Sets specific pin to zero. Pins is automatically designated output. Same effect can be
achieved with PORTB=0.
Example: Main:
low PORTB.7 ‘ St RB7toalow leve
Loop: goto Loop
End
Turns off the processor for a short period of time
Syntax: NAP period
Description: | Instruction sets PIC microcontroller to low power mode (state of low energy consumption)
for a short period of time. During this "nap", energy consumption is minimized. Stated
periods are just approximations because these values were taken from watch dog timer
and depend on chip and temperature:
Period Delay [ms]
0 18
1 36
2 72
3 144
4 288
5 576
6 1152
7 2304
Example:
Main:

Basic for PIC Microcontrollers 63

nap 7' takeanap for 2.304 seconds
Loop: goto Loop

End

Designates /O pin as output

Syntax: OUTPUT pin

Description: | Designates specified pin as output.

Example: Main:
output PORTB.7 * Pin RB7isoutput
TRISB.0=0 ‘ Same effect as above
Loop : goto Loop

End

Receives data via one-wire communication

Syntax: OWIN Pin, Mode, [Varl, Var2...]

Description: | Parameter “Pin” is a variable containing the microcontroller pin connected to the e ement
which has one-wire communication.

Parameter "Mode” is value defined by parameters of communication.

""Mode" bit How it works
0 1 =sending the reset signal ahead of data
1 1 =sending thereset signal after data
0 = 8hbit data
2
1=1-bit data

Basic for PIC Microcontrollers 64

Parameters “Varl” and “Var2” are variables for containing the read data.

Example: Temperature var byte

Main:

OWIN PORTC.0, O, [Temperature] read the temp.

PORTB=Temperature * display temperature on port B diodes
goto Main
End

Transmits data via one-wire communication

Syntax: OWOUT Pin, Mode, [Varl, Var2...]

Description: | Parameter “Pin” is variable containing the microcontroller pin connected to the element which
has one-wire communication.

Parameter “Mode” is vaue defined by parameters of communication.

""Mode" bit How it works
0 1 =sending the reset signal ahead of data
1 1 = sending thereset signal after data
0= 8bhitdata
2
1=1-bitdata

Parameters “Varl” and “Var2” are variables for containing the read data.

Example: Main :

OWOUT PORTC.0, 1, [$CC, $BE] ‘ sendsreset signal and 2 values afterwards
goto Main

End

Basic for PIC Microcontrollers 65

Pause (in miliseconds)

Syntax: PAUSE Period (in miliseconds)
Description: | Instruction pauses the program for “Period” miliseconds. Period is 16-bit, allowing delay
to be as long as 65 535ms (a bit over a minute). Unlike other delay instructions (NAP and
SLEEP), PAUSE does not put the microcontroller to low power mode. Thus, PAUSE
consumes more energy, but gets more accurate timing (it has precision of a system
clock).
Example: TRISB=0
Main:
PORTB = 255
pause 1000 ‘ Delay execution of next instruction line for 1 sec.
PORTB =0
pause 2000 ‘ Delay execution of next instruction line for 2 sec.
goto Main
End
Pause (in microseconds)
Syntax: PAUSEUS Period (in miliseconds)
Description: | PAUSEUS stops the program for “Period” miliseconds. Period is 16-bit (WORD), allowing

delay to be as long as 65 535ms (a bit over a minute). Unlike other delay instructions
(NAP and SLEEP), PAUSE does not put the microcontroller to low power mode. PAUSEUS
consumes more energy than PAUSE, but gets much more accurate timing. Minimal delay
of PAUSEUS depends on the crystal frequency.

| 0SC | Minimal delay

Basic for PIC Microcontrollers 66

3(3.58) 20 us
4 24 us
8 12 us
10 8us
12 7us
16 5us
20 3us

PAUSEUS works with default 4MHz crystal frequency. If frequency differs from default it is
necessary to modify it with directive: DEFINE Osc.

Example:

TRISB = 0
Main:
PORTB = 255
pauseus 100 ° Delay execution of next instruction line for 100 microsec
PORTB =0
pauseus 3450° Delay execution of next ingtruction line for 3.450 ms
goto Main

End

Returns value of OTPORNOST connected to the pin

Syntax:

POT Pin, Scale, Var

Description:

Instruction POT measures value of potentiometer on a given pin. Resistance can be
calculated using the time of condenser discharge through resistor (usually 5K to 50K).
Scale is used for setting various RC constants. For higher RC constants, scale should be
set to the lowest value (minimally 1). For lower RC constants, scale should be set to the
highest value (maximally 255). If the scale is set properly, "Var" should have near zero
value, close to the minimum of resistance (unfortunately, scale value has to be

determined experimentally).

In order to set the "Scale" parameter, potentiometer should be set to maximum
resistance and measured with scale set to 127. Next, "Scale" parameter should be
adjusted until value of "Var" reaches 255. Program below does it automatically.

Example:

BO var byte

Basic for PIC Microcontrollers 67

skala var byte
Main :
FOR skala=1 TO 255
pot PORTA.OQ, scale, BO ' read value of potentiometer on RAQ
IF BO>253 Then Over
NEXT skala
Over : PORTB=scale ' display value of the scale on port B diodes
goto Main

End

Measures impulse duration on input pin

Syntax: PULSIN Pin, Level, Var

Description: | Instruction measures impulse duration with 10us resolution (when 4MHz oscillator is
used) on a given pin. If level is zero it measures duration of low impulse and if level is
one it measures duration of high impulse. Measured value of duration is put to variable
"Var". Measuring can last from 10 to 65 535 microseconds for 16-bit variables. If impulse
doesn't appear at all or it's duration is too long to be measured variable is set to zero.
In case of 8 bit variable only lower 8 bits of a 16-bit word are used. Resolution depends
on oscillator frequency. 4MHz oscillator has 10us resolution, while 20MHz oscillator has
2us resolution.

Example: WO var word

Main :

pulsin PORTB.0, 1, WO ' Measures high impulse on RBO pin with 10us resolution
and puts

' it to variable WO
goto Main

End

Basic for PIC Microcontrollers 68

Generates impulse on output pin

Syntax: PULSOUT Pin, Period
Description: | Instruction generates impulse of specific duration in tens of microseconds (when 4MHz
oscillator is used) on a pin. Impulse is generated by double change of level on a pin, so
that former state of pin defines polarity of an impulse. Chosen pin is automatically
designated output.
Resolution depends on oscillator frequency. 4MHz oscillator has 10us resolution, while
20MHz oscillator has 2us resolution.
Example: Main :
pulsout PORTB.7, 100 ' Generate 1ms impulse to RB7 pin
goto Main
End
Generates PWM signal on pin
Syntax: PWM Pin, Ratio, Cycle
Description: | Instruction sends PWM (Pulse-Width Modulation) impulses Ratio to pin defined with

parameter "Pin" (for each PWM signal, cycle goes from 0 (0%) to 255 (100%)). This PWM
cycle repeats itself for number of times defined with "Cycle" parameter. Pin direction is
set to output just before generating PWM impulse and is set back to input afterwards.

Cycle duration depends on the oscillator used. In case of 4MHz oscillator cycle duration is

5ms, while in case of 8MHz oscillator cycle duration is 1ms. Instruction PWM allows simple
R/C circuit to be used for generating DC voltage like a simple D/A converter.

PWM duty cycle

Example:

Main :

Basic for PIC Microcontrollers 69

pwm PORTB.7, 127, 100 ' Send pwm cycle with 50% of signal (ON) to RB7
goto Main

End

Generates pseudo-random number

Syntax: RANDOM Variable
Description: | Instruction RANDOM stores pseudo-random number to variable. Variable should be 16-
bit.
Example: WO var word
Main :
random WO ' Put random number to variable WO
lcdoout #WO ' Display @mndom number on LCD
goto Main
End
Measures impulse duration on pin (similar to PULSIN)
Syntax: RCTIME Pin, State, Variable
Description: | RCTIME measures time period during which "pin" remains in a certain state. If ihe state
remains unchanged variable is set to zero. RCTIME can be used for reading potentiometer
or some other resistive element based on the time necessary for filling RC constant.
Typical resistance measured is within 5K~50K range.
Resolution depends n oscillator frequency. 4MHz oscillator has 10us resolution, while
20MHz oscillator has 2us resolution.
Example: WO var word

Main :

low PORTA.O ' Discharge the condenser

Basic for PIC Microcontrollers 70

pause 10 * Discharging lasts for 10ms
rctime PORTA.O, 0, WO ' Measure duration of charging
Icdout #WO0 * Display value of WO on LCD
goto Main

End

Reads one byte of data from data EEPROM

Syntax:

READ Address, Variable

Description:

Instruction READ reads data from internal EEPROM memory from the specified address
and stores the result to "Variable". This instruction can only be used with PIC
microcontrollers which have EEPROM built in the chip. If microcontroller is supplied with
external EEPROM, instruction I2CREAD should be used instead.

Example:

BO var byte

W var word

Main :
READ 5, BO ' read data from EEPROM, address 5 and put it to variable BO
READG6, W.BYTEO ‘' load 16-bit data
READ 7, W.BYTE1 ' from addresses 6 and 7 to variable W

Loop: goto Loop

End

Reads 2 bytes (word) of program code from the address

Syntax:

READCODE Address, Variable

Description:

READCODE reads program code from a given address and puts the result to 16-bit
variable. PIC16F87X microcontroller family allows reading and writing program code while
microcontroller is in operation.

Example:

Wo var word

Basic for PIC Microcontrollers 71

Main :

readcode 100, WO ' load data from program FLASH memory, address 100 to
var. WO

Loop : goto Loop

End

Basic for PIC Microcontrollers

Introduction

4.1 @

4.2 ASM..ENDASM
4.3 ADCIN

4.4 BRANCH
4.5 BRANCHL
4.6 BUTTON
4.7 CALL

4.8 CLEAR

4.9 CLEARWDT
4.10 COUNT
4.11 DATA
4.12 DTMFOUT
4.13 EEPROM
4.14 END

4.15 FREQOUT
4.16 FOR-NEXT

Return from the subroutine

INSTRUCTIONS (4/4)

4.17 GOSUB

4.18 GOTO

4.19 HIGH

4.20 HSERIN

4.21 HPWM

4.22 HSEROUT
4.23 I2CREAD
4.24 12CWRITE
4.25 INPUT

4.26 TF-THEN-ELSE

4.27 LCDOUT
4.28 LCDIN

4.29 {LET}
4.30 LOOKDOWN

4.31 LOOKDOWN2
4.32 LOOKUP

4.33 LOOKUP2
4.34 LOW
4.35 NAP
4.36 OUTPUT
4.37 OWIN
4.38 OWOUT
4.39 PAUSE
4.40 PAUSEUS
4.41 POT
4.42 PULSIN
4.43 PULSOUT
4.44 PWM
4.45 RANDOM
4.46 RCTIME
4.47 READ

4.48 READCODE

72

4.49 RETURN
4.50 REVERSE

4.51 SELECT-CASE

4.52 SERIN
4.53 SERIN2
4.54 SEROUT
4.55 SEROUT2
4.56 SHIFTIN

4.57 SHIFTOUT

4.58 SLEEP
4.59 SOUND
4.60 STOP
4.61 SWAP
4.62 TOGGLE
4.63 WRITE

4.64 WRITECODE

4.65 WHILE-WEND

Syntax: RETURN

Description: | Instruction RETURN executes return from the program routine which program jumped
onto via GOSUB instruction.

Example:

Main :
gosub portb_on

Loop : goto Loop

portb_on:
PORTB=$FF
return

End

call a subroutine init_ram

' Light all port B diodes

return from subroutine

Basic for PIC Microcontrollers 73

Changes pin orientation

Syntax: REVERSE Pin
Description: | Instruction REVERSE inverts orientation of a specified pin. If pin is input, REVERSE
changes it to output and vice versa.
Example: Main :
reverse PORTA.O ' Change orientation of RAO pin
Loop : goto Loop
End
Conditional multiple program branching
Syntax: SELECT CASE Var
CASE Expressionl {, Expression}
Instructions...
CASE Expression2 {, Expression}
Instructions...
CASE Expression3 {, Expression}
Instructions...
CASE ELSE
Instructions...
END SELECT
Description: | Although conditional SELECT - CASE branching can be made with multiple IF-THEN
instructions, it is easier and more sensible to use this instruction in certain
situations. Instruction allows "Expression" to be a constant, one of the constants or a
comparison to a certain constant.
Example: W var byte

Basic for PIC Microcontrollers

74

B var byte

Main :

NEXT W

END

FOR W=1 TO 9

SELECT CASE W

CASE O
B=1
PORTB=B
Pause 3000
CASE 1,2,3
B=2
PORTB=B
Pause 3000
CASE IS > 5
B=3
PORTB=B
Pause 3000
CASE ELSE
B=FF
PORTB=B
Pause 3000

END SELECT

Basic for PIC Microcontrollers 75

The example above cycles numbers from 0 to 9 in the SELECT CASE branching. If W
equals zero port B diodes will take value of 1. If W equals 1, 2 or 3 port B diodes will take
value of 2.

If W equals 4 or 5 port B diodes will take value of 255 because 4 and 5 haven't been
defined - therefore, value from CASE ELSE part of the instruction is taken.

If W is greater than 5, port B diodes will take value of 3.

Asynchronous serial input (like with BS1)

Syntax:

SERIN Pin, Mode, {Timeout, Label}, {[Qual...], }{Item...}

Description:

SERIN receives one or more values on a specified pin "Pin" using the standard
asynchronous format 8N1 (8 data bits, no parity check and one ‘stop' bit).

Instead of numerical vaue ranging from O to 15, Mode can be a name if "modedefs.inc*
library is included ahead.

Mode Mode number Baud rate State
T2400 0 2400
T1200 1 1200

True
T9600 2 9600
T300 3 300
N2400 4 2400
N1200 5 1200

Inverted

N9600 6 9600
N300 7 300

SERIN ingtruction can include label (parameter "Labe") which the program will jump onto if
there is no data received during the specified time period (parameter "Timeout" - default value

is1ms).

There can be qualifier within brackets [] ahead of every data. SERIN must receive these bytes
in correct order before receiving datawords. If any received byte doesn‘t match next byte's
qualifier, marking process begins anew - next received byte is compared to the first on the
qualifying list. Qualifying content can be a constant, variable or character string. Every
character in astring is treated as a separate qualifier.

Basic for PIC Microcontrollers 76

When qualifiers are set, SERIN tries to save datato variables. If there is character # ahead of
variable SERIN converts decimd value to ASCII and stores the result in that variable.

SERIN works with 4AMHz oscillator by default. In order to achieve certain transfer rate with
other oscillators, it is neccessary to use appropriate "DEFINE Osc" directive.

Example:

BO var byte
Main :
* Wait for character "A" to be received on seria line on pin RBO and store next
* received character to variable
serin PORTB.0, N2400, ["'A"], BO
varigble BO

lcdout BO * Display content of BO on LCD

Loop : goto Loop

End

Asynchronous serial input (like with BS2)

Syntax:

SERIN2 Pin{\FlowPin}, Mode, {ParityLabel}, {Timeout, Label}, [Item...]

Description:

SERINZ receives one or more values on a specified pin "Pin" using the standard asynchronous
format 8N1 (8 data bits, no parity check and one ‘stop’ hit).

Instead of numerica vaue from 0 to 15, Mode can be a name if "modedefs.inc” library is
included ahead.

Mode Mode number Baud rate State
T2400 0 2400 True

Basic for PIC Microcontrollers 77

T9600 2 9600
T300 3 300
N2400 4 2400
N1200 5 1200
Inverted
N9600 6 9600
N300 7 300

Optional "FlowPin" can be used to prevent eventua data lossin high speed transfers. If used,
"FlowPin" isautomatically set to regular state (depends on polarity from Mode parameter -
table above) in order to alow transfer of every character.

Mode can be used for defining baud rate and serial transfer parameters. Lower 13 bits
determine baud rate. Bit 13 selects (non)parity check. Bit 14 selectsinverted or true level,

while bit 15 is unused. Transfer rate determines bit duration in microseconds. To determine bit
duration for a given transfer rate, following equation is used :
(1000000 / baud rate) - 20

Table below shows several standard transfer rates:

Baud Rate bit0-12
300 3313
600 1646

1200 813
2400 396
4800 188
9600 84
19200 32

Bit 13 enables parity check if bit 13 equals 1 and disablesit for 0. For bit13 = O transfer format
is8N1. In case that parity check is needed, following directive should be used :

DEFINE SER2 ODD 1

Bit 14 sdlects datalevel of flow control pins. If bit 14 equals O datais received true, while
bit14 = 1 receives inverted data.

Basic for PIC Microcontrollers 78

Some of standard settings include :

Mode= 84 (9600 baud, no parity check, true)
Mode = 16780 (2400 baud, no parity check, inverted)
Mode = 27889 (300 baud, parity check, inverted)

Optional label "ParityLabel" specifies label which program jumps onto if transfer error occurs
(this label makes sense only if parity bit is on).

"Timeout" and "Label" alow program to proceed from designated label if thereis no datain
specified time period. Waiting time is expressed in miliseconds.

DEFINE directive alows transfer of data with size greater than 8, that is 7 with parity check.
SER2 BITSalowstransfer of dataranging from 4 to 8 hits.

SERINZ2 supports many different data modifiers that can be combined to allow various input

data formats.

Modifier How it works

BIN{1..16} Takes binary digits

DEC{1..5} Takes decimal digits

HEX{1..4} Takes hexadecimal digits

SKIPn Skips next n characters
STR ArrayVann{\c} ;I;T)If[?g ;28 sequence of n charactersthat endswith the character ¢
WAIT () waitsfor character sequence
WAITSTR ArrayVar{ \n} waitsfor astring

If prefix BIN is used ahead of variable, ASCII character in binary value of variable will be
received. For example, if we write BIN BO and received value is "1000" BO will take vaue of
8.

If prefix DEC is used ahead of variable, ASCII character in decima vaue of variable will be
recaived. For example, if we write DEC B0 and received vadue is "123" BO will take vaue of

Basic for PIC Microcontrollers 79

123.

If prefix HEX is used ahead of variable, ASCII character in hexadecimal vaue of variable will
be received. For example, if we write HEX B0 and received value is"FE" BO will take vaue
of 254.

Key word SKIP followed by a number enables that many characters from input row to be
skipped. For example, SKIP 4 would skip 4 characters.

If key word STR isfollowed by variable of string type, number "n" and optiona ending char,
character string will be received. String length is defined with "n" or with appearing of fina
element of astring.

Data bytes received usually go after one or more identification bytes. Identification bytes
comewithin small brackets after WAIT. It means that the sequence of received bytes must
match the sequence of identification bytes. Otherwise, if one of recelved bytes doesn't match
following byte in identifier sequence, identification process starts anew - next received byte is
compared to the first identification byte.

| dentification byte can be a constant, variable or array of constants. In the last case, every
constant is treated as a separate identifier.

WAITSTR isused in asimilar way as WAIT, except for the fact that the key is character
string instead of byte sequence.

Instruction SERINZ2 assumes that microcontroller clock works at 4AMHz. In case of different
oscillator it is necessary to make adjustment with following directive :

DEFINE OSC.

Example:

serin2 PORTB.0, 16780, [wait("A"), BO]

walit for character "A" to be received to RBO pin and store next recelved character to variable
BO.

Basic for PIC Microcontrollers

80

serin2 PORTB.O, 84, [skip 2, dec 4, BO]

Skip 2 characters and receive next 4 decima numbers.

Syntax:

Asynchronous serial output (like with BS1)

SEROUT Pin, Mode, [Item{, Item...}]

Description:

SERIN sends one or more values to a specified pin "Pin" using the standard asynchronous
format 8N1 (8 data bits, no parity check and one ‘stop’ bit). Transfer modes ("Mode") include

Mode Mode number Baud Rate State
T2400 0 2400
T1200 1 1200 .
Driven True
T9600 2 9600
T300 3 300
N2400 4 2400
N1200 5 1200 .
Driven Inverted
N9600 6 9600
N300 7 300
OT2400 8 2400
OT1200 9 1200
Open True
OT9600 10 9600
OT300 11 300
ON2400 12 2400
N12 1 12
© 00 3 0 Open Inverted
ON9600 14 9600
ON300 15 300

Instead of numerica vaue from O to 15, Mode can be a name if "modedefs.inc” library is

included ahead.

If thereis character # ahead of variable SEROUT converts decimal valueto ASCII and sends

Basic for PIC Microcontrollers 81

it. For example, if B equals 34 then #B sends ‘3" and ‘4"

SEROUT works with 4AMHz oscillator by default. In case of different oscillator it is necessary
to make adjustment with following directive : DEFINE OSC.

In cases of dower recelving device, it is necessary to wait for a certain amount of time when
sending next data. DEFINE directive enables delay ranging from 1 to 65 535 microseconds
(0.001 to 65.535 miliseconds) between sending 2 characters.

DEFINE CHAR_PACING 1000 ‘ 1msdelay between 2 chars

Example: BO var byte
Main:
BO=25
serout PORTA.3, N2400, [#B0, 13] * Send ASCII value of BO and constant 13 to
RA3 viaseid line
Loop : goto Loop
End
Asynchronous serial output (like with BS2)
Syntax: SEROUT2 Pin{\FlowPin}, Mode, {Pace, }, {Timeout, Label}, [Item...]
Description: | SEROUTZ2 sends one or more values to pin determined with parameter "Pin". "Ain" is

automatically designated output, while optiona "FlowPin" is designated input. Optional
"FlowPin" is used for indicating data loss at receiver. Level of permission depends on data
transfer mode determined by "Mode".

Optional parameters " Timeout" and "Label" alow program to proceed and in case that
"FlowPin" doesn‘t change to state of transfer allowed in a given time period. Wait time
"Timeout" is entered in miliseconds.

In some cases transfer rate of SEROUT2 can be too high for receiving device. Then, it ismore

Basic for PIC Microcontrollers 82

efficient to set delay between 2 characters using the "pace" parameter instead of using extra
pin as"FowPRin". In thisway, it is possible to provide sufficient delay when sending data.

Mode is used to determine baud rate and important parameters of seria transfer. Lower 13 bits
determine baud rate. Bit 13 selects (non)parity check. Bit 14 selectsinverted or true level,
while bit 15 is used to determine if connection is curently in transfer or not. Transfer rate
determines bit duration in microseconds. To determine bit duration for a given transfer rate,

following equation is used :
(1000000 / baud rate) - 20

Table below shows severd standard trarsfer rates:

Baud Rate bits 0-12
300 3313
600 1646

1200 813
2400 396
4800 188
9600 &4
19200 32

If set, bit 13 enables parity check. Transfer format is standard 8N1 (8 data bits, no parity
check, one ‘stop’ bit) and for bitl3 = 1 format is 7EL (7 data bits, parity bit and one ‘stop’ bit).

Bit 14 selects data level of "flow control” pins. If bit 14 equals O datais received true, while

bit1l4 = 1 receives inverted data (this can used to avoid installation of RS232 communication
driver - MAX232).

Bit 15 determines if data pin is still connected (bit15 = 0) or disconnected from data transfer
line. This option is useful in case of connecting multiple devices to common serial line.

Some of standard settings include :
Mode=84 (9600 baud, no parity check, true)
Mode = 16780 (2400 baud, no parity check, inverted)

Mode = 27889 (300 baud, parity check, inverted)

Basic for PIC Microcontrollers 83

DEFINE directive SER2 BITS dlows transfer of data with size different than 8 (7 with parity
check). SER2_BITS adlows transfer of data ranging from 4 to 8 bits. Default value is 8 hits.

SEROUT?2 supports many different data modifiers that can be combined in order to alow
various input data formats.

Modifier How it works
{I}{S} BIN{1..16} Sends binary digits
{1}{S} DEC{1.16} Sends decimal digits
{1}{S} HEX{1..16} Sends hexadecimal digits
REPc\n Sends character "c"*, "n" times
STR ArrayVann{\c} (S(fpr)}[(ij;nglf)" n" characters sequence that ends with the character "c"

If prefix BIN is used ahead of variable, ASCII character in binary value of variable will be
sent. For example, if we write BIN BO and BO = 8, bits 1000 will be sent serial.

If prefix DEC is used ahead of variable, ASCII character in decima value of variable will be
sent. For example, if we write DEC BO and BO = 123, data 123" will be sent.

If prefix HEX is used ahead of variable, ASCII character in hexadecimal value of variable will
be sent. For example, if we write HEX BO and BO = 254, SEROUT2 will send "FE".

REP followed by a character and a number of repeating provides more compact form of
writing long strings of same characters. For example, REP "0'\4 stands for "0000"

STR followed by variable of string type and an optional numerical parameter "count” executes
sending of character string. String length is determined by "count™ or by appearance of
character "0" in a string.

Optional parameters can be used ahead or behind BIN, DEC and HEX. In case that "I" is used
ahead of any of these, output data will begin with %@, #@ or $@ in order to mark current
value as binary, decima or hexadecimal.

In casethat 'S’ (signed) is used ahead of BIN, DEC or HEX , output data will begin with ™"
if highest data bit is set to 1. This alows transfer of negative values. Y ou should bear in mind,
though, that all mathematical and comparison operations work with unsigned numbers. Still,
unsigned numbers arithmetic allows signed values as results. For example, in case of BO=9-
10, DEC BO gets value of "255", whereas SDEC B0 sends 1" after the transfer of the highest
bit.

BIN, DEC and HEX can be followed by a number. It is common practice to write numerica
data in exact number of digits needed, so that leading zeros are erased and not sent. In case
that BIN, DEC and HEX are followed by a number, SEROUTZ2 will always send that exact
number of data, adding leading zeros if needed. For example, BING 8 sends BIN "001000",

Basic for PIC Microcontrollers 84

while BIN2 8 sends "00". All these modifies can be used smultaneoudly (i.e. ISDEC4 BO).

Instruction SEROUT2 assumes that microcontroller clock works at 4MHz. In case of different
oscillator it is necessary to make adjustment with following directive :

DEFINE OSC

Example:

BO = 25

SEROUT2 PORTA.3, 16780, [DEC BO, 10]

Send decimal value of variable BO and "LineFeed" via serial line (2400 bauds) to pin RA3.
BO = 25

SEROUT2 PORTA.1, 84, ["BO=", IHEX4 BO]

Send string "B=" and 4-character hexadecimal value of variable BO to RA1 at 9600
bauds.

Synchronous serial input

Syntax:

SHIFTIN DataPin, ClockPin, Mode, [Var{\Bits}...]

Description:

Instruction SHIFTIN shifts receiving bits on a given pin in synchrony with "ClockPin"
frequency signal and stores them to variable. "Van\Bits" optionally specifies the number of
bits to be shifted. If nothing is specified, default number of bits is 8.

Depending on shifting direction (from MSB to LSB or vice versa) various transfer modes
can be defined.

Transfer modes Mode are defined within MODEDEFS.BAS library. To use them, it is
necessary to include mentioned library at the beginning of the program with : Include
"modedefs.bas"

"Mode" nll\l/[l;.lgte}r Operation
First, the highest bit is shifted. Datais read ahead of sending clock. Clock is
MSBPRE 0 inactive on alogical zero.
L SBPRE 1 First, thelowest bit is shifted. Data is read ahead of sending clock. Clock is
inactive on alogical zero.
MSBPOST 2 First, the highest hit is shifted. Dataisread after sending clock. Clock is

Basic for PIC Microcontrollers 85

First, the lowest bit is shifted. Dataisread after sending clock. Clock is
LSBPOST 3 inactive on alogical zero.

4 First, the highest bit is shifted. Dataisread ahead of sending clock. Clock is
inactive on alogical one.

5 First, the lowest bit is shifted. Datais read ahead of sending clock. Clock is
inactive on alogical one.

6 First, the highest bit is shifted. Dataisread after sending clock. Clock is
inactive on alogical one.

7 First, the lowest bit is shifted. Datais read after sending clock. Clock is
inactive on alogical one.

Shifting frequency is about 50KHz, depending on oscillator used. Active state lasts for at
least 2 microseconds. Using the directive DEFINE enables additional delay (up to 65.535
miliseconds) for slowing down the clock.

DEFINE SHIFT_PAUSEUS 100 ' Slowing down the clock for additional 100ms

Example: shiftin Data, Clock, MSBPRE, [RxData]
Sends the contents of input SHIFT register to variable RxData so that the first bit is MSB.
Synchronous serial output
Syntax: SHIFTOUT DataPin, ClockPin, Mode, [Var{\Bits}...]
Description: | Instruction SHIFTOUT shifts bits of variable "Var" on a given pin in synchrony with

"ClockPin" frequency signal. "Var\Bits" optionally specifies the number of bits to be
shifted. If nothing is specified, default number of bits is 8.

Transfer modes Mode are defined within MODEDEFS.BAS library. To use them, it is
necessary to include mentioned library at the beginning of the program with : include
modedefs.bas

Shifting frequency is about 50KHz, depending on oscillator used. Active state lasts for at
least 2 microseconds. Using the directive DEFINE enables additional delay (up to 65.535
miliseconds) for slowing down the clock.

DEFINE SHIFT_PAUSEUS 100 ‘' Slowing the clock for additional 100ms

"Mode" Mode number Operation
LSBFIRST 0 First, the lowest hit is shifted.. Clock isinactive on alogical zero.
MSBFIRST 1 First, the highest bit is shifted.. Clock isinactive on alogical zero.
4 First, the lowest bit is shifted.. Clock isinactive on alogica one.
5 First, the highest bit is shifted.. Clock isinactive on alogical one.

Basic for PIC Microcontrollers 86

Example:

BO var byte
B1 var byte
WO var byte
Main :
shiftout PORTA.0, PORTA.1, MSBFIRST, [BO, B1]

' Sends the contents of variables BO and B1 to output SHIFT register so that the
first

' transferred bit is MSB

shiftout PORTA.0, PORTA.1, MSBFIRST, [W0\4]

' Sends 4 bits of variable WO so that the first transferred bit is MSB
Loop : goto Loop

End

Turns off the processor for a given time period

Syntax:

SLEEP Period

Description:

Instruction puts the microcontroller to a state of low energy consumption for "Period" of
seconds. "Period" is a 16-bit value allowing maximal delay of 65 535 seconds (about
18h). SLEEP uses the watchdog timer (WDT) with granularity about 2.3 seconds. RC

oscillator is less temperature stable than system clock, making WDT somewhat less
accurate.

Example:

Main :
sleep 60 ' Go to low power mode for next 60 sec

Loop : goto Loop

End

Basic for PIC Microcontrollers 87

Syntax:

Generates sound or white noise on a given pin

SOUND Pin, (Note, Duration{, Note, Duration})

Description: | Instruction generates tone and/or noise on a given pin. For Note=0 there is no sound

generated. If Note falls within range of 1-127 tones are generated, while range of 128-
255 generates noise.

Tones and noises are sorted in an ascending fashion (1 and 128 are the lowest
frequencies, 127 and 255 are the highest). Duration ranges from 0 to 255 and defines
sound duration in 12ms increments ("Note" and "Duration" don't have to be constants).

Sound is being sent to output in form of sequence of TTL rectangle impulses. Thanks to
the outstanding I/0O features of PIC microcontrollers, a speaker can be driven directly
trough electrolitical capacitor. Piezo speakers can be driven directly.

Example: Main :
sound PORTB.7, (100, 10, 50, 10) ' Sends 2 sounds in sequence to pin RB7
Loop : goto Loop
End
Stops the program execution
Syntax: STOP
Description: | Instruction stops the program execution by commencing the infinite loop. This instruction
does not put the microcontroller to low power mode.
Example: Main :
STOP ' Stop the program execution in this line
Loop : goto Loop
End
Exchanges values of two variables
Syntax: SWAP Variablel, Variablel

Description: | Instruction SWAP exchanges values of two variables. It can be used with variables of bit,

byte and word types. SWAP can be used with strings, but only with those that have
constant indexes.

Basic for PIC Microcontrollers 88

Example: BO var byte
Bl var byte

temp var byte

Main :
temp = BO
BO = B1
Bl = temp ' classical way to do it
swap BO, B1 ' ...and easier way to do it

Loop : goto Loop

End

Inverts pin states

Syntax: TOGGLE Pin
Description: | Instruction inverts state of a specified pin. "Pin" is automatically designated output.
Example: Main :

low PORTB.0 ' Set the state of pin RBO to low level as starting condition

toggle PORTB.0 ' Change state of pin RBO to high level
Loop : goto Loop

End

Writes byte of data to data EEPROM

Syntax: WRITE Address, Value

Description: | Instruction writes "Value" to a specified address of EEPROM. WRITE can only be used with
PIC microcontrollers that have EEPROM built in chip.

Basic for PIC Microcontrollers 89

If 2-byte variable is being stored, two bytes are written in sequence :
WRITE Address, Variable.BYTEO

WRITE Address, Variable.BYTE1

Example:

BO var byte
Main :

BO = $EA

write 5, BO ' Writes value $EA to location 5 of EEPROM
Loop : goto Loop

End

Writes two bytes (word) of datato program memory

Syntax:

WRITECODE Address, Value

Description:

WRITECODE writes "Value" to a given address of program memory. This instruction can

only be used with PIC microcontrollers that have FLASH memory in chip. Interrupts
during the writing must be on.

Example:

WO var byte
Main :
WO = $12FE

writecode 100, WO ' Write value $12FE to location 100 of program FLASH
memory

Loop : goto Loop

End

Executes set of instructions while condition is fulfilled

Syntax :

WHILE Condition

Basic for PIC Microcontrollers 90

Instructions...

WEND
Description: Purpose of thisinstruction isto keep executing set of instructions between WHILE and WHEN aslong as
"Condition" isfulfilled.
] while expression
in
instruction
- weni
Y
N T
< expression >———m= jnstruction
NT
Example: i Va byte
Main:
i=1
WHILE i< 10 * wheni reaches 10 program stops and port B has value of 9
izi+1
PORTB =i
Pause 1000
WEND
goto Main

End

Basic for PIC Microcontrollers 91

Chapter 5

Introduction

5.1 Using the interrupt mechanism

5.2 Using theinternal AD converter

5.3 Using the TM RO timer

5.4 Using the TMR1 timer

5.5 Using the PWM subsystem

5.6 Using the hardware UART subsystem (RS-232 communication)

Every microcontroller is supplied with at least a few integrated subsystems- commonly, these include timers, interrupt mechanisms
and AD converters. More powerful microcontrollers can command greater number of built-in subsystems. Some of frequently
encountered systems are detailed in this chapter.

Interrupts are mechanisms which enable instant microcontroller response to events such as: TMRO counter overflow, state changes on
RBO/INT pin, dataiis received over serial communication, etc. With bigger microcontrollers, number of interrupt sourcesis even
greater. In normal mode, microcontroller executes the main program as long as there are no occurrences that would cause interrupt.
When interrupt does take place microcontroller stops the execution of the main program and starts executing part of the program
(interrupt routine) that will analyze and handle the interrupt. Analysisin necessary because PIC microcontrollers call the same
interrupt routine in response to any of the mentioned events. Therefore, thefirst task isto determine which event caused the interrupt.
After the analysis comes the interrupt handling, which is executing the appropriate part of program code tied to acertain event.

Basic for PIC Microcontrollers 92

+5Y
Example of using the
external interrupt INT
3 3
2l g e
[]ra ra1 [
2 17
[]Rad RAD (] AhHz
3 16
[redmockl 051 H‘ |
T Reset g 15 |=. :.’7
o D——{|MCR 0502 | F———
‘ ‘ 1 PIC Iy aniad| E
o ——{]vs: 16F84 vdd [1
g 13 0 A
| RENANT RET[F———— «—— LEC_mn
7 12 300 AN
[ret RBE [—T——p—— «—— LED_int
= g 1
. []re2 RES[]
Fressing the button T causes]] -4
the intemupt INT [] re3 RE4[]

Button T is connected to the external interrupt input INT (pin RBO/INT) so that pressing the button is considered an interrupt
occurrence. In order to see the change caused by interrupt LED diodes are connected to the pins RB6 and RB7. LED_run diode
signalizesthat the main program is being executed, while LED _ini diode signalizesthe interrupt caused by pressing the button T.
Following instructions are used in PIC BASIC programs which contain interrupt routine

On Interrupt goto Address Definestheinterrupt vector (address of interrupt routine)

Disable Disablesthe interrupts
Enable Enablesthe interrupts
Resume Return to the main program after handling the event

Following example demonstrates usage of external interrupt INT located on pin RBO. At the same time, program gives an example
how to handle multiple interrupt sources.

Basic for PIC Microcontrollers

— &

Main:

I3E:

REIF:

Program: INT. BE&3

symbhol LED run
symbol LED int
TRISE = %00111

= PORTE.7
= PORTE. &

111

OPTION _FEG = %10000000

On Interrupt Goto ISR

INTCON = %1001
FOETE = 0O

LED_run=1

LED_int=0
goto HMain
Di=ahle

if INTCON.O
if INTCON.1
if INTCON.Z
if EECON1.4

INTCON.O = 0

'| Deo programa koji wrsi

aooo

1 then
1 then
1 then
1 then

'l obradu prekida

goto Exit_I3R

FEIF
INTF
TOIF
EEIF

LED _run is connected to pin RE7
LED int iz connected to pin FEo
Pinzs BE7 and BE6 are output
Turn off Pull-up resistors and
zet the interrupt on the

descending edge of the signal

Interrupt wector
Enable external interrupts

Initial walue on port B

Beginnhing of the main program
While there is no interrupt
diode on BEY is on while diode
on RE6 is off

Junp back to the beginning

Interrupt routine

Change hasz occured on RE4-EBE7
Change has occured on BEOSINT
Owerflow has occured on THRO
Writing to EEPROM is finished

Clear BETF flag

Exit from interrupt routine

93

Basic for PIC Microcontrollers A

INTF:
LED int=1 ' When interrupt occurs diode RE7Y
LED run=0 ' iz off while diode on BE& iz on
Pause 500 ' pause for making change wiszible
INTCON.1 = 0 ' Clear INTF flag
goto Exit ISR
TOIF:
INTCON.Z = 0 ' Clear TOIF flag
"l
"l
goto Exit TI3R
EEIF:
EECON1.4 = 0O ' Clear EEIF flag
"l

Program which handles interrupt must have the main loop (program) and an interrupt routine. Program in the main loop keeps

LED run diode onandLED _int diode off. Pressing the button T causes theinterrupt and the microcontroller will stop executing the
main program and start executing the interrupt routine ZSR marked by On interrupt instruction.

At the beginning of the interrupt routine there isinstruction Disable. Thisinstruction disables all interrupts until handling the current
interrupt isover. I SR routine then analyses the interrupt by checking bits (flags) set on "1" with couple of if...then instructions,
because there are several possible interrupt causes. In our case, an external interrupt took place (pin RBO/INT state changes) and
therefore bit INTF in INTCON register is set and the microcontroller continues program execution from the label INTF. Part of the
program code following thelabel INTF handles the interrupt and resetsINTF bit in order to enable interrupts again. In this case,
handling the extemal /N Tinterrupt changes state of diodes LED int and LED run : itturns off LED run and turns onLED _int for
half second period. After INTF is being reset, microcontroller continues executing the program from Exit ISR label where interrupts
areenabled (instruction Enable) and microcontroller returns to executing the main program (instruction Resume).

Why useinterruptsat all ? In situations where the microcontroller must respond to events unrel ated to the main program it is very
useful to have an interrupt. Perhaps, one of the best examplesis multiplexing the seven-segment display. If multiplexing code is part
of theinterrupt routine tied to timer interrupt the main program will be much less burdened because display refreshing will work inthe
background of the main program.

fnstruction Pause is used in the interrupt routine but it showld be avoided
becanas it hlacks the microconiraller’'s regponse to ather interrupts. It s
usad here only far the sake of obhaarving the interrunt when it takes place.

Certain microcontrollers have built in analog-digital converter (abbrev. ADC). Usualy, these AD converters do not exceed 8 to 10 bits
resolution alowing them voltage sensitivity of 19.5mV with 8-bit resolution and 4.8mV with 10-bit resolution (assuming that default

Basic for PIC Microcontrollers

5V voltageisused).

95

The simplest AD conversion program would use 8-bit resolution and 5V of microcontroller power as referent voltage (value which the
value "read" from the microcontroller pin is compared to). In the following example we measure voltage on RAQ pin whichis
connected to the potentiometer (picture below).

a
]
o
o 10K

Use the potentiometer to
change voltage on RAD

]
"l
—
m
)

I

o
"l
—
m
)

I

¥
“ul
—
m
[}

I

k]
“ul
—
m
)

I

]
"l
—
m
)

I

o
"l
—
m
L}

I

o
"l
—
m
)

S
[| MCLRAppTHY RE7PGD[] L

L[] Ransam rEGPGEC] |

[| Raténnt RES |]

[| ra2sarzairet. RE4]]

[| RazianzArets RE3PEM| |

[reaTock re2 | |

[| Raseang RE1[]

[| rE0RD NS - REOANT|]

[| RE1 MR o ekt |]

+8Y =

= [|RE2TmnT 23 s [] 300
il % RO7PSFT[] —
[vs= 0 RDEPSPE | 3a0c
OSCICLKIN my RDSPSPS] | 3-—'3m
— | oscacLkout RD4PSP4 | —
— [|roomiosomic RoTRDT] | 2200
[% [remiosi RCBMHCH | 1

R [roziccrd Rros |
[]Ros RC4] | 3300
[| roopsro rDSPSP3| | -
= RD1PSP Ro2PsP2 | | 330e
| —
| S
3300
| S|
3300
| S |

I

]
"l
—
m
)

]

Potentiometer gives OV in oneterminal position and 5V in the other, so that digitalized voltage can take values ranging from 0 to 256
due to the fact that 8-bit conversion is used. The following program reads voltage on RAO pin and displaysit on port B diodes. If not

onediodeison, resultiszero and if al of diodes are on, result is 255.

Basic for PIC Microcontrollers 96

|I Program: INT_ADCL.E&3
[]

TRIZA = %11111111 ' Port A iz input
ADCONL 10000010 ' Port 4 iz in analog mode, 0 and 5V are

' referent woltage walues and the result
' iz right formatted (higher 6 bhits of
' ADBEESH are =zeros).

ADCONO = %11000001 ' ADC clock is generated by internal RC
' circuit, woltage is measured on Rl
' and allows the use of AD converter
Pause 500 ' Half a second pause
Main: ADCONO.Z = 1 ' Beginning of conversion

Cekaj: Pause 5

If ADCONO.Z2 = 1 Then Cekaj ' Wait for AD conwversion
' to be finished

POERTDr = ADRESH ' Het the lower & bits on PORTD

Pause 500 ' Half a second pause

Goto Main ' Repeat all

End ' End of the program

Att hevery beginning, it is necessary to properly initialize 2 bit registers ADCON1 and ADCONO. Afterwards, only thing requiredis
to set ADCONO.2 bit which initializes the conversion and checks ADCONO.2 to determine if conversion is over. After the conversion
isover, result is stored into ADRESH and ADRESL where from it can be copied. Former example can also be carried out viaADCIN
instruction. Following example uses 10-bit resolution and ADCIN instruction.

Basic for PIC Microcontrollers 97

[] Program: INT_ADC i .BA3
ll‘

Define ADC BITS 10 ' Numher of bhits

Define ADC_CLOCK 0 ' Clock (0=0scillator fZ)

ADC Rez war word Fezult of AD conversion is 16 bita.
TEI3A = %11111111 ' Port 4 iz input
TRIZD = 00000000 ' Port D iz output

ADCON1 = %10000010 ' Port & iz in analog mode, O and 5V are

referent wvoltage walues and the result

iz right aligned.

Main: HADCIH 0, ADC Re=z ! Execute conwversion and store resulting

16 bits into wariable ADC _Re=z.
FORTE=ADC FRez.BYTE.O ' display the resulting lower & bhits

' on port B
Pause 500 ' Half a second pause
Goto HMain ' Repeat all
End ' End of the program

Asone port isinsufficient, LCD can be used for displaying all of the 10 bits of result. Connection schemeis on the picture below and
appropriate program follows.

Basic for PIC Microcontrollers 98

Ilge potentiometer for

+3u

/changingthevnltagenn
RAD

| | Ex

+i s

100q

J

[WCLF I THY RETIFED :l
L[| remern s]
& [Rreiniarn res | o
s [Feamirmirer- T |l =
[mmu‘rm FEIFIV :| Iezn
[Jromroce rez |
Razal [regam rei BCASY
‘ [REI:IRIJME - FROHT [
o w fuEw g uf - C
|_|: v % FOMFEET]DT"—
Tl % FOBFEFE]% = .
g ¥ el FPOREEAER T | |
ETﬂE 1 il IRRRRNRRRRRRRNED
A [Jreacee res]
= mf
[JroarzFa FOAFEFA s o e e e
= RSP roaF3F 980000900404 1 o
| 3y
2
. ‘Plj LCD cortrast
bracklight
L

Basic for PIC Microcontrollers 99

|I Program: INT_ADC:® EAS
[]

DEFIHE LCD_DREG FPORTD
DEFIHE LCD_DEIT 4

DEFIHE LCD_EIT3 4

DEFIHE LCD_R3FEG PORTD
DEFIHE LCD_R3BEIT =2
DEFIHE LCD_EREG FORTD
DEFIHE LCD_EEIT 3
DEFTHE LCD_LINES 2
DEFTHE LCD_ COMMANDUS Z000
DEFIHE LCD_DATATIS 40

Define ADC EBITS 10 ' Number of bits

Define ADC CLOCE 1 ' Clock (0=0szcillator /&)

AT Fez wvar word ' Result of Al conversion iz 16 bits.
TRISA = %11111111 ' Port 4 is input

ADCON1 = 10000010 ' Port & is in analog mode, 0 and 5V are
' referent voltage walues and the result

' iz formatted.

Main: ADCIH 0, il Re= ' Execute conwversion and store resulting

' 16 bits into wariable ADC _Re=.

Ledout $£e, 1 ' Clear the LCD
Lecdout 5fe, 2 ' Jet cursor to first line first
' character
Lodout "AD rez: 7, DEC AD rez= ' Print ™D _rez:” and

' result of AD conversion

Pause 500 ' Half a second pause
Goto Main ' Repeat all
End ' End of the program

TMRO timer is 8-bit and has working range of 255. Assuming that 4MHz oscillator is used, time period TMRO can measure fallsinto
0-256 microseconds range (with 4AMHz frequency TMRO increments by one microsecond). If prescaler is used that period can be

Basic for PIC Microcontrollers 100

prolonged, because prescaler dividesthe clock in a certain ratio (prescaler settings are madein OPTION_REG register).

Following program illustrates use of TMRO timer for generating 1 second time period. Prescaler is set to 32, so that internal clock is
divided by 32 and TMRO increments every 31 microseconds. If TMRO isinitialized on 96, overflow occursin (256-96)*31 us =5 ms.

If variable "Brojac" isincreased every time interrupt takes place, we can measure time according to the value of variable "Brojac”. If
"Brojac” is set to 200, time will total 200*5 ms = 1 second.

Before the main program, TMRO should have interrupt enabled (bit 2) and GIE bit (bit 7) in INTCON register should be set.

H Frogram: THMED .E&S
[
symhol LED = PORTE.l ' LED diode iz connected to EEOD
brojac var hyte ' Temporary counter
TRIZE = 0 ' Pins of port B are output
PORTE = 0O
INTCON = 00100000 ' Enable interrupt THMED
OFTION_REG = %10000100 ' et prescaler to 32
brojac = 0 ' Initializing temporary counter
TMRO = 96 ' Initiali=zation of THMRO
On Interrupt Goto ISR ' Interrupt wectokr
INTCON = %10l00000 ' Enable interrupts
Main: ' Beginning of the program
if brojac = Z00 then ' Change the state of LED diode
toggle LED '"on every 200 ¥ Stm3 = 1=
brojac = 0 ' Discard the counter
endif
goto Main ' Jump to the beginhing
Disahle
I5E:
brojac = brojac + 1 ' Increase counter by 1
THEO = 96 ' Initiali=ze the counter
INTCON.Z = 0 ' Clear TOIF flag
Resume ' BEeturn to the main program
Enable
End

Unlike TMRO, TMR1 is 16-bit and has working range of 65536. Assuming that 4AMHz oscillator is used, time period TMR1 can

Basic for PIC Microcontrollers 101

measure falls into 0-65536 microseconds range (with 4AMHz frequency TMRO1 increments by one microsecond). If prescaler is used
that period can be prolonged, because prescaler divides the clock in a certain ratio (prescaler settings are madein TLCON register).

Before the main program, TMR1 should be enabled by setting the zero bit in TLCON register. Besides that, first bit of the register
should be set to zero, thus defining the internal clock for TMRL.

Besides TLICON, other important registers for working with TMR1 include PIR1 and PIEL. The first contains overflow flag (zero bit)
and the other is used to enable TMR1 interrupt (zero bit).

When TMR1 interrupt is enabled and its flag reset only thing left to do isto enable global interrupts (bit 7) and peripheral interrupts
(bit 6) in the INTCON register.

Thefollowing program illustrates use of TMR1 register for generating 10 seconds time period. Prescaler is set to 00 so thereisno
dividing the internal clock and overflow occurs every 65.536 ms. If variable "Brojac” isincreased every time interrupt takes place, we
can measure one minute period according to the variable "Brojac”. If "Brojac" is set to 152, time will total 152* 65.536 ms = 9.960
second.

Basic for PIC Microcontrollers

Program: TMEL.E&3

Main:

I3E:

5]

symbol LED = PORTE.1L
Erojac war byte
TRIZE=%00000000
T1CON=%00000001

FIR1.0=0

PIEl= %00000001
Erojac = 0

TMRL = 0

PORTE = 0

On Interrupt Goto ISR
INTCON = %11000000

if Erojac = 152 then

toggle LED
Brojac = 0
Endif
goto Main
Dizahle

Erojac = Brojac + 1
PIR1.0O 0

Resume
Enahle
End

LED' diode is comnected to REL
Tewporary counter

Pinzs of port B are output
Prescaler is 1l:1 and enables
interrupt THMEL

clear the owverflow flag of
THME1l timer to prevent
generating interrupt at instant
Enable interrupt THEL
Initializing temporary counter
Initiali=zation of THRL

A1] diodes on port I are off
Interrupt wector

Enable interrupts

Beginning of the program
Change the state of LED diode
oh every 152 % 65,5m3 = 1l0O=

Discard the counter

Junp to the beginning

Incraese the counter by 1

Clear TOIF flag

Feturn to the main program

102

Microcontrollers of PIC16F87X series have one or two PWM outputs built-in (those in 40-pin casing have 2, while thosein 28-pin
casing have 1). PWM outputs are located on RC1 and RC2 pinsin case of 40-pin microcontrollers and on RC2 pinin case of 28-pin
microcontrollers. HPWM instruction greatly simplifies using the PWM. There are only 3 parametersto be set :

Basic for PIC Microcontrollers 103

PWM Channel : defineswhich PWM channel isused; "1" defines channel on RC1 pin, while "2"
defines channel on RC2 pin.
Ratio S P: defines the ratio of on and off'signals on pin. "0" defines continual
off state, whereas " 255" defines continual on state. All values within these
limits define appropriateratio of on and off signalson pin. (i.e. "127" gives
50% of OV on output and 50% of 5V on output).

Frequency : defines PWM signal frequency. Top frequency for any oscillator is 32767Hz.

The following example demonstrates use of PWM for getting various light intensities on LED diode connected to RC1 pin (PWM
channel 0). Parameter defining ratio of or and off signalsis continually increased in the for-next 1oop and takes value from 0 to 255,
resulting in continual intensifying of light on LED diode. After value of 255 has been reached, process begins anew.

Basic for PIC Microcontrollers 104

|I Program: HPODM . E&3
[]

i var hyte ' Temporary wvariable

Odnos_3 F war byte ' Variable containing walue of signal
' and pause ratio. If 0 then the
' 2ignal is 0V all the time and if Z55
' z2ignal is 5V all the time

Odnos_3_F=0 ' Initialization

Main:
For i=0 to Z55
HPFMM 1,0dnos_3 F,2000 ' Operating with PUM chamnel
' that is ECl pin
Odnos_3 P=0dnos_3 P+1
pause 100
Hext i
i=0
Odnos_3_F=0
Pause 4000
goto Main
End

Easiest way to transfer data between microcontroller and some other device (i.e. PC or other microcontroller) is the RS-232
communication. Itisserial asynchronous 2-line (Tx for transmitting and Rx for receiving) data transfer for within 10m range.

This example shows data transfer between the microcontroller and PC connected by RS-232 line interface (MAX232) which hasrole
of adjusting signal levels on the microcontroller side (it converts RS-232 voltage levels+/- 10V to TTL levels 0-5V and vice versa).
Microcontroller can achieve communication with serial RS-232 line via hardware UART (Universal Asynchronous Receiver
Transmitter) which isthe integral part of PI C16F87X microcontrollers.

Basic for PIC Microcontrollers 105

4T F +50 s
+ 731 . T —— | MeLRAppTHy RETPGD | |
Ll [Fentan REGRGE []
3
i [Fst e S
"i"r_[el e = [reztamarimer. Fea |]
o] = GHD]1 [restamsaires REsPoM |]
. -+
SUB-D connector B-pin ‘—l—i ct Tau f] | [rear ok Rz []
st W T [o]
o o “1“'_*] [| reosDuens - REtaNT []
{ Thin 11 [JretanFiens = witd | |
-] Tzau Tain [F—— o +EY [reaizen 2 wss []
N [] mzin rzas | F—— e
P w L{ Wi o roieser [
b o _|:+_| Mesise] 3 roeeses | |
p e den DSC1ELEIN ROSPSPS
R q
i I — — | oscerikour Roapspa |]
o = — [[reomiosomicy rerdoor | J—
Dol O |2 [rermios roemack [
! P T T|F [Jreeccer res [
P [rcs red []
P q _ ' [] rooesea RO3PsPs |
P L —E_ receives data (Rx) I::,:' = [|Fmiese RoaFsee |
P T {9 sends data (i)
:)
. C) I
i EN

UART contains special registersfor receiving and transmitting dataas well as BAUD RATE generator for determining datatransfer
rate.

The program below illustrates use of hardware serial communication subsystem (serial communication can also be software based on
any of 2 microcontroller pins). Datareceived from PC is stored into variable BO and sent back to PC as confirmation of successful
transfer. Thus, it is easy to check if communications works properly. Transfer format is 8N1 and transfer rate is 2400 baud.

In order to achieve communication, PC must have the communication software. One such program is part of the MicroCode studio. It
can be accessed by clicking View and then Serial Communication Window. New window will appear on screen and can be used for
adjusting transfer settings. First it is necessary to set transfer rate by clicking Baudrate on theleft of the window (set it to 2400,
because microcontroller is set to that rate). Communication port is selected by clicking one of the 4 available depending on port
connected to aserial cable.

After making adjustments, clicking Connect starts the communication. Type your message and clickSend Message - message is sent
to the microcontroller and back, whereit is displayed on the screen.

106

Basic for PIC Microcontrollers
o Program: UART.EALS
]
E0 war byte Var. for storing receiwved data
TRIIC = %10111111 PFCd output TX pin, rest is input
2PBRE = Z5 Zet Baud rate to Z400
RCOSTA = %10010000 Enable serial port and reception
TEZ3TA = 00100000 Enakle asynchronous data sending
Main:
Gosub charin Beceiving data wvia serial line
If B0 = 0 Then Main " Data i3 not received
Gosub charout If received send it back
Goto Main REepeat the loop
charin: Receiving data from UART
EO = 0 E=0 if data is not received
If PTR1.5 = 1 Then If PTR1.5 = 1 data
iz in RCREG
E0 = RCRE® Load the data from the receiving
register RCREG to EO
Endif
Return
charout:
If PIR1.4 = 0 Then charout " Wait for sending
" register to be ready
TEREZ = EO " Bend the data to
" sending register
Return
End " End of the program

Basic for PIC Microcontrollers 107

Chapter 6

Introduction

6.1 LED diode

6.2 Button

6.3 Generating sound

6.4 Potentiometer

6.5 Seven-segment displays

6.6 Step motor
6.7 | nput shift register

6.8 Output shift reqister
6.9 Software serial communication

6.10 Building light control

This chapter gives detailed examples of connecting PIC16F84 microcontroller to peripheral components and appropriate programs
written in BASIC. All of the examples contain electrical connection scheme and program with comments and clarifications. Y ou have

the permission to directly copy these examples from the book or download them from the web site
http://www.mikroelektronika.co.yu/ .

One of the most frequently used componentsin electronicsis surely the LED diode (LED stands for Light Emitting Diode). Some of
common LED diode featuresinclude : size, shape, color, working voltage (Diode voltage) Ud and electric current Id. LED diode can
have round, rectangular or triangular shape, although manufacturers of these components can produce any needed shape by order. Size
i.e. diameter of round LED diodes ranges from 3 to 12 mm, with 3 or 5 mm sizes most commonly used. Color of emitting light can be
red, yellow, green, orange, blue, etc. Working voltagei.e. necessary for LED diode to emit light is 1.7V for red, 2.1V for green and
2.3 for orange color. This voltage can be higher depending on the manufacturer. Normal current I1d through diode is 10 mA, while
maximal current reaches 25 mA. High current consumption can present problem to devices with battery power supply, soin that case
low current LED diode (Id ~ 1-2 mA) should be used. For LED diode to emit light with maximum capacity, it is necessary to connect
it properly or it might get damaged.

Basic for PIC Microcontrollers 108

+5Y
Lr 8y
iy Y o 5-Ud
Ur R U I T Cath{ R[] |

The positive pole is connected to anode, while ground is connected to cathode. For matter of differentiating the two, cathode is marked
by mark on casing and shorter pin. Diode will emit light only if current flows from anode to cathode; in the other case there will be no
current. Resistor is added serial to LED diode, limiting the maximal current through diode and protecting it from damage. Resistor

value can be calculated from the equation on the picture above, where Ur represents voltage on resistor. For +5V power supply and 10
mA current resistor used should have value of 330,

LED diode can be connected to microcontroller in two ways. One way isto have microcontroller "turning on" LED diode with logical
one and the other way iswith logical zero. Thefirst way is not so frequent (which doesn't mean it doesn't have applications) because it
requires the microcontroller to be diode current source. The second way workswith higher current LED diodes.

Basic for PIC Microcontrollers 109

+3
1 L =]
Rz Rid
i i
[res ran] atiuiz
1 1§
[reamock lil:1us |]—I_,_—|' |
L 15 [=]
Raat ‘u—s[m PIC 93¢ :.!—T_':]l 5
[+ — | 16F84 wad]—T
fi [El mn AR En
= [re0ANT RET
T 12
4 [|re1 REG [—bld —=
=] 1
REZ RES
9[:.lu LED diode isturned
[re= Re4ll on by & logical one
+3
1 L =]
Rz Riti
i 4 i
[res ran] aliuiz
H] 15
[[raamack (ul:0ud]—I_,_—u' |
L 15 [=]

Rasal ‘u—s[m PIC o5z [—a—4 | o
L L—i s 16FB4 tidd

— j[REOANT RET T

i

]

i

]

i

REA REs]] H*—— =

REZ ResH L ED dinde is turned

RE2 RE4] on by a logical zero

The following example uses instructions High, Low and Pause to turn on and off LED diode connected to seventh bit of port B every
half second.

Basic for PIC Microcontrollers

110

LED diodes are conected to
part B and are turned on by a
logical one

LED diode is connected to pin
RBT in the sample

Frogram: LED.EAS

+i4
1 L) 18
RAZ RA1
) i o
[JRrA3 RANT ahiHz
3 16
[JRALTOCK] OSC’I]ﬁ—iI |
g 15 | = 37
Reset ‘u—gm pic 50— | s
06— [l 16F84 vi[] 1
fi 13 3300 A LED
—{REMINT RET :I—:I—il—' -«
i 12 z:0 AA | EO
1 | ——{]rs1 REG[————p—
= g 11 3300 AA |LEO
—|RE? REAT——+——
a 0 oz A LED
|—[RE3 RE4]—l:l—i'—r
3500 A3 ED
iy H—i" '
LED
E AR LED
— —1
3500 i)' LED
— 5]
O
Loop:
High PORTE.7 Turn on LED
Pause 500 Half a second pause
Low PORTE.7 Turn off LED
Pause 500 Half a second pause
Foto loop Go back to Loop
End End of progran

Basic for PIC Microcontrollers 111

Button isamechanical component which connects or disconnects two points A and B over its contacts. By function, button contacts
can be normally open or normally closed.

A A

| |
b 7

Button with narmally Button with normally
open contact closed contact

Pressing the button with normally open contact connectst he points A and B, while pressing the button with normally closed contact
disconnects A and B.

Buttons can be connected to the microcontroller in one of two ways:

Inthefirst case, button is connected in away that logical one (+5V) remains on microcontroller input pin while button is not pressed.
Resistor between a button and power voltage has role of holding the input pin in defined state when the button is not pressed (in this
case alogical one). Thisis necessary as a protection from glitch on input pin that might cause misinterpretation of program, i.e. asif
button is pressed when it is not.

+3 +5W

s 18
3 o [raz R[]
b B H z 17

RAZ rao[]
RAMTOCKI OSC1]4|_t|l |

iy \ﬂ—‘
=
o
Ja
=
I
M

Button with T Reset - 15 —
“oull-up” ‘o—ﬁ[MCIR o 08C2 :1|44T_| | +'5|'U
resistor O—Lvs 16F84 vl
[|REGANT RET[]
7 12
1 [re1 RES[] =
= = g 11
[rez RES[]
g 10
[rez RE4[]

When the button is pressed, input pinis short circuited to the ground (OV) which indicates change on input pin. Voltage has dropped

Basic for PIC Microcontrollers 112

from 5V to OV. This change isinterpreted by program asif button was pressed and part of program code tied to a button (for example
turn on LED diode) is then executed. Thisway of defining pin statesis called defining with "pull-up" resistors, associating that the
lineisheld up onthelogical onelevel.

In the other case, button is connected in away that logical zero remains on input pin. Now, resistor is between input pin and alogical
zero, meaning that pressing the button bringslogical oneto input pin. Voltage goes up from OV to +5V. Microcontroller program
should recognize change on input pin and execute the specific part of program code. Thisway of defining pin statesis called defining
with "pull -down" resistors, associating that the line is held down on the logical zero level.

+5Y +5\
T l 1 hod 15
3 Fa R
I & ¢ .
Ig RAZ RAD :1|E Avthe
Butt ith RAMTOCKl 0SCT]4_5' |
utton wi Reszeat 4 15 | o]
“pull-down” 3 ‘o—g MCLR plc 9862 :1|44‘L| | .y
resistor = o— [|vss 16F84 e[l T
=1 13
[rBOANT RET[]
K 12
1 [[rE1 RES[] L
- - g 11
[|rE2 RES[]
a 10
[|rez RE4[]

Common way to connect the button is with pull-up resistors, meaning that pressing the button changes pin state from logical oneto
logical zero. Following picture displays four button connected to the microcontroller using the pull -up resistors.

Basic for PIC Microcontrollers 113

MR pig 086 — | v

|
L

+5
)|
Buttons are connected to port A
g[] g[] g i L 18 and the LED diodes are
[]RA2 RAT connected to port B
7 17
I:R"u"3 RA[I] 4hiHz
LT ; RANTOCK 051 flﬁﬁ'_—l |
S I T Reset f 5 |=
; o———]
! 5
Wez IGF84 Wdd[]
. !] 13 3300 AR ED
»* —|REOANT RET[]]
7 12 3500 AA B0
1| —fre REG[]

/

11 33000 A2 En

REZ RES

[——1——p—
10 3300
RE3 RE4]—I:I—ﬁﬂv

&% LED

Buttons are connected to ping
RAD and RA1 in the sample

—
IE

300 A LED

' LED diode is connected to the
| pin BB in the sample

300 A LED k/f

sfsfs]

Problem that occurs when working with buttonsis contact debounce in the moment when button is pressed. Debounce is consequence
of the contact and heavily depends on the very button.

One of the ways to solve the contact debounce problem is given in the following part of program code :

if Button0=0 then Wait0 * If Buttonl=0, Jjump to Waitl
if Buttonl=0 then Waitl * If Buttonl=0, jump to Waitl
Waitl: if Button0=0 then WaitO * If Buttonl=0, wait until it 1is
w=tr+1 * released and increase w
Waitl: if Button0=0 then Wait0 * ' If Buttonl=0, wait until it 1is

wW=uwr—1 released and decrease w

Pressing the Button(causes the program to jump to addressWait0 where it remainsin the loop until the button is released (this
achievesthat single button push isjust once handled in program). When Button0 is released program continues executing instructions
(inthis case variable W isincreased by one). Pressing Buttonl causes the same effect, except that variable W is decreasal by one.

Problem might arise if an interrupt or some other source slows down the program execution, so that program finds itself on Wait0 or

Basic for PIC Microcontrollers 114

Waitl lines after the button is released. This might cause program blocking until buttonis pressed again.

In the following program for reading the button states, BASIC instruction Button is used which eliminates the contact debounce.

The program reads buttons TO and T1 which are connected to the pins RAO and RA1, respectively. Pressing the button 0 executes part
of program code which turns on LED diode on pin RBO. Pressing the button 1 executes part of program code which turns off LED
diode on the same pin. The mentioned instruction is among the most complex instructions of BASIC program language. Besides few
arguments that should be defined, instruction has an argument for setting the delay time between recognition of two different button
pressures (the third argument). Its setting depends on the purpose of the button as well as mechanical properties of the button. Still, it
came clear over time that maximal value of last argument represents the best solution for most applications, because of great
disproportion in human reaction and microcontroller speed.

Basic for PIC Microcontrollers 115

Program: Taster.BAS

(=

Main:

Ledon:

B0 war byte " WVariabhle used by instruction EBUTTON

symhol EButtonl
symbol Buttonl

EORTA. O " Button 0 iz connected to pin RAQD

PORTA.1 " Button 1 is connected to pin RAl

symbol LED = FORTE.O " LED diode is connected to REO
TRIZA = SFF " 411 pins of port & are input

TRISE = 500 " A1l pins of port B are output

PORTE = 500 ° Turn off all LED diodes at start

EDO = O " Initialize the wariabhle EO

T

If Button 0 is pressed jump onto LedOn
button Buttonl,0,255,0,B0,1, Ledln

BO = 0O
" If Button 1 1is pressed jump onto LedOff
button EButtonl,0,255,0,E0,1,Led0ff

T

goto Main Jump back to the beginning of the program

LED = 1 ' Turn on LED diode

goto Main

Ledoff:

LED = 0 " Turn off LED diode

goto Main

T

end End of program

Basic for PIC Microcontrollers 116

Sometimesit is necessary to provide sound signalization on device, besides the visual one (LED diodes). The following example
shows one way to generate sound signal using the mini speaker and BASIC instruction Sound.

+§[".,"
3 3 3 3
g] ¢ I 0
—|ra2 RAT
2 17
LR RAOTT— iz
- : e
=T T RALTOCK 501
TO T4 T2 Reset B 1&:}
! . O—— MCLE 05Cz
WIS B s o e I
(2 T T Ti—[ves 16F84 wid |}
R T] 13
I ™ RBOAMT RBY =
L . ,
_L [re RES[]
- 2 11
[{re2 res[] .r
Buttons are connected to the g 10
pins RAD, RA1 and RAZ in the [rez RB4[]

sample = 4e

Buttons and a mini speaker
are connected to port A

oG

Buttons are connected to pins RAO, RA1 and RA2. Pressing any of these executes part of the code for generating impul se sequence on
RA3 pin, which can be heard as one monotonous sound or amelody on mini speaker. Consecutive execution of instruction Sound with
different parameters allows composing various mel odies.

In the following program, pressing the button TO generates one monotonous sound on amini speaker, while pressing the buttons T1
and T2 executes sequences of Sound instructions which can be heard as two different melodies on amini speaker.

Basic for PIC Microcontrollers 117

H Program: S0UND.EAS

]
BEOD war byte " Variable used by instruction BUTTON
symbol Buttonl = PORTA.QO * Button TO0 is connected to RAD
symhol Buttonl = PORTA.1 " Button Tl is connected to RAIL
symbol ButtonZz = PORTA.Z " Button TZ is connected to RAZ
symbol EeepPort = PORTA.3 " Mini speaker connected to RAZ
symbol EBeepTris = TRIZA.3
TRIZA = S1f " Initialization of port &
BEeepTrizs = 0O " Inititalizing the mini speaker

Main:

Play0O:

Flayl:

PlayZ:

EeepFPort = 0O

" If button TO
BO =0

iz pressed Jump onto PlayD

button Taster0,0,Z55,0,B0,1,FPlavy0

" If hutton T1
BO =0

iz pressed Jump onto Plawl

button Tasterl, 0,255,0,B0,1,FPlavyl

" If button TEZ
BO =0

iz pressed Jump onto PlayZ

button TasterZ, 0,Z55,0,B0,1,PlayZ

goto Main
sound BeepPort,
goto Main

sound EBeepPort,
goto Main

sound BeepPort,
goto Main

End

T

Repeat the loop

[110,255] T

T

Monotonous sound
Jump to beginning

[105,50,110,50,120,50] " First melody

[120,50,110, 50,105, 50] T Zecond melody

T

End of program

Basic for PIC Microcontrollers 118

In order to measure and display analog values, besides the microcontroller, it is necessary to have an AD converter. This can be an
expensive solution if someless precise measuring isrequired, for example potentiometer voltage. For thisreason PIC BASIC features
the POT instruction for using the microcontroller without AD converter.

Potentiometer is connected to pin RAD

oy and the LED diode is connected to port B i
10k52
3
2] : u 19
[ra Ra1[] '
z 17 J— 100nF
Sl;m RAD 6 dhiHz I
[|ragiToCKl 08C1]ﬁl_—i' | =
FResat 4 15 =
O0——— | MCR oscz [J————
‘ L PIC . el ke
o— T[|wss 16F84 il]
G 13 20 A LED
—— | RBOANT RET)
7 12 3300 A LED
il — | RE1 R \
= 2 11 3300 AR ED
—| rEZ RES]
=] 10 300 AR L ED
|— REZ RE4]
kx]l+] A LED
LI N—'
kx]l+] AR ED
kx]l+] AR ED
100 AR ED

RC pair which consists of potentiometer (typical resistancein 5-50k range) and a 100nF capacitor is connected to RAO pin. Reading
the potentiometer is based upon measuring the time period between capacitor discharging and charging. Measuring scale ranges from
0to 255 asif 8hit AD converter was used.

The following program reads potentiometer value in 0-255 range and displaysit on LED diodes connected to the port B.

Basic for PIC Microcontrollers 119

.I Program: POT.Ea3
O

E0 wvar bhyte ' Wariable used by instruction POT

' Potentiometer iz connected to EAOD

symhol FPotentiometer = PORTA.O

TRIZA sff ' Port 4 iz designated input
TREIZE = 0 ' Port B iz designated output

Main:
' Read the walue of potentiometer

pot Potentiometer, =255, EO

FPORTE = EO ' Display walue on LED diodes
pause 10 ' 10 m=s pause

goto Main ' Repeat the loop

end ' End of program

Most common form of communication between the microcontroller system and aman is, of course, the visual communication. The
simplest form isthe LED diode, while seven-segment digits represent more advanced form of visual communication. The name comes
from the seven diodes (there is an eighth diode for adot) arranged to form decimal digits from 0 to 9. Appearance of a severrsegment
digit is given on apicture below.

Towards the microcontroller pin
cantrolling this segment

F30E

ﬂ d

ll
ll

e |d |K|c|

Basic for PIC Microcontrollers 120

Asseven-segment digits have better temperature features as well asvisibility than LCD displays, they are very common in industrial
applications. Their use satisfies al criteriaincluding the financial one. Simple application would be displaying value read from a

certain sensor.

Digits can have a shared cathode [K) or anade [A). In the first case
the segment is turned on by & logical one and in the second case, by
logical zero.

Tens

digit

Example of connecting %W‘T
seven-segment displays 4

in multiplex mode with T1
the microcantroller WED
gli|kfa p I
L
RAz R S
RAz R0 ' '
R2ATOCK] 05 ' '
[pyc osce 4
vis 16FBd wae [—T n NEIEE |d|:| BEIRE ldp
1 hAlEs]
REOANT RET [——=
2 8
REA REE| —T—"1+———————
" 16 f
REZ RES | —1T—1
LI 1] =
RE3 Red | F———"73
M d
M C
—
M I:'
ma a
1

One of the ways to connect seven-segment display to the microcontroller is given on apicture above. System is connected to use
seven-segment digits with common cathode. This means that segments emit light when logical oneis brought to them, and that output

of al segments must be atransistor connected to common cathode, as shown on the picture. If transistor isin conducting mode any
segment with logical one will emit light, and if not no segment will emit light, regardless of its pin state.

If we use the scheme from the picture above, one of the ways to realize the display in BASIC could be the following program code:

Basic for PIC Microcontrollers

Variables LEDDispl and LEDDisp2 are actually pins 1 and 0 of port A, which bases of transistors T1 and T2 are connected to.
Setting logical one on those pins turns on the transistor, allowing every segment from "a' to "h", with logical one onit, to emit light. If
thereislogical zero on transistor base, none of the segmentswill emit light, regardless of the pin state. Tensdigit isdisabled at the

— =

Main:

Digit wvar byte
Maska wvar byte

i wvar hyte
LEDDisl war PORTA.1L
LEDDisZ war FPORTA.QO

TERIZ4=%00000000
TRI3E=%00000000

LEDDi=Z=0
LEDIDizl=1

for i=0 to 9
Cifra=i

Lookup Digit,[53F,506,558,584F, 566,560,570 ,507,57F,56£] ,Maska
3end mask of a number to port B
Pause allowing to see the change

PORTE=Mask
pause 500

next i

goto Main

end

Program: Display:. BA3

Lemporary wariable

all pins of port 4 are
all pins of port B are
Digit on PAl (ones) i=
Digit on PAOD (tens) i=s

Repeat the loop

1

1

' Increase i by one
1

' End of program

Value of number to be displayed
Mask of number to be displavyed

Tranzsistor for ones digit
Transistor for tens digit

output
output
off

on

very beginning of program, ahead of label Main (LEDDisp2=0).

Purpose of the program isto display figures from 0 to 9 on the ones digit, with 0.5 seconds pause in between. In order to display any
number, it's mask must be sent to port B. For example, if we need to display "1", segments"b" and "c" must be set to 1 and the rest
must be zero. If (according to the scheme above) segments b and ¢ are connected to the first and the second pin of port B, values 0000
and 0110 should be set to port B. These values which are set to port are commonly called "masks'. Mask for number "1" is value 0000

0110 or $06 (hexadecimal). The following table contains corresponding mask values for numbers0-9 :

121

Digit Seg. h Seg. g Seg. f Seg. e Seg. d Seg. ¢ Seg. b Seg. a HEX
0 0 0 1 1 1 1 1 1 $3F
1 0 0 0 0 0 1 0 $06
2 0 1 0 1 1 0 1 1 $5B
3 0 1 0 0 1 1 1 1 $4F
4 0 1 1 0 0 1 1 0 $66
5 0 1 1 0 1 1 0 1 $6D
6 0 1 1 1 1 1 0 1 $7D
7 0 0 0 0 0 1 1 1 $07
8 0 1 1 1 1 1 1 1 $7F

Basic for PIC Microcontrollers 122

9 0 1 1 0 1 1 1 1 $6F

Program uses the instruction Lookup to apply an appropriate mask to numerical value. Instruction Lookup works very simply - it puts

acharacter from a sequence, its position defined by numerical value Digit, to variable Mask. For example, Mask will take value $5B if
Digit has value 2. In that manner, we can easily get mask for any decimal digit.

Continual display of Mask (PORTB=Mask) for appropriate value of variable Digit, with 0.5sec pause, will produce an effect of digits
rotating fromQ0to 9.

Problem with multiplexing occurs when displaying more than one digit is needed on two or more displays. It is necessary to put one
mask on one digit quickly enough and activateit'stransistor, then put the second mask and activate the second transistor (of course, if
one of thetransistorsisin conducting mode, the other should not work because both digits will display the same value).

New program differs from the one above in converting 2-digits value to 2 masks, which are displayed in away that human eye gets
impression of simultaneous existence of both figures (thisis the reason for calling it "multiplexing” - only one display actually emits
in any given moment).

Let's say we need to display number 35. First, the number should be separated into tens and ones (in this case, digits 3 and 5) and their
masks sent to port B. This separation can be done with instruction Dig. For example, Digit1= W dig 0 will extract onesdigit from
variable W and storeit into variable Digit1. If O is substituted with 1, tens digit will be extracted. Following the same logic, 2 extracts
number of hundreds, 3 number of thousands, etc.

Basic for PIC Microcontrollers 123

Program: Displayi EB&3
—& -
[]

Digit war byte ' Walue of number to be displayed

Mask war hyte ' Mask of rmumber to be displaved

W wvar bhyte ' temporary wariable

LEDDi=l war PORTA.1 ' Transistor for ones digit

LEDDi=sZ war PORTA.0 ' Transistor for tens digit

TEIZA=%00000000 ' all pins of port 4 are output

TRISE=%00000000 ' all pins of port B are output

LEDDi=1=0 ' ones digit is off in the start

LEDDisZ2=0 ' tens digit is off in the start

Main:

W=35

Digit=TW dig 1 ' Put tens to wariable Digit

Fosub binZseq ' Call the coversion of binary number
' to a code of appropriate Jseq digit

PORTE=HMazk ' Zet the mask of a digit to port B

LEDDiszZ=1 ' Print the tens digit

pause 1 ' Hold it printed for 1 ms

LEDDi=Zz=0 ' Turn off the tens digit

Digit=W dig 0 ' Put ones to wariable Digit

Gozub bindszeqg ' Call the cowerzion of binary number
' to a code of appropriate Jseq digit

PORTE=Digit

LEDDi=1=1 ' Print the ones digit

pause 1 ' Hold it printed for 1 ms

LEDDi=1=0 ' Turn off the ones digit

oto Main ' Again, for achiewving the effect that
' both digits are on simultaneously

binzZzeq:

Lookup Digit,[53F,$06,55B,54F, 566,560 ,57D,507,57F,56£],Mask

Return

End

This part of program code prints value 35 on two seven-segment displays. Therest of the program isvery similar to the last example,
except for having one transition caused by displaying one digit after another. This transition can be spotted when LEDDispl isbeing
turned off and LEDDisp2 turned on with a new mask. Lookup tableis still the same and may be called as a subroutine when needed.

The multiplexing problem is solved for now, but the program doesn't have a sole purpose to print values on displays. It is commonly
just asubroutine for displaying certain information. However, thiskind of solution for printing data on display will make essence of
the program much more complicated. This newly encountered problem may be solved by moving part of the program for refreshing
the digits (part of the program code for handling the masks and controlling the transistors) to interrupt routine. The following program
shows how to use interrupt for refreshing the display. Main program increases the value of variable W from 0 to 99 and that valueis
printed on displays. After reaching the value of 99, counter begins anew.

Basic for PIC Microcontrollers

Program: Display? EB&3

&

Main:

Digit war byte
HMazk wvar hyte
M wvar hyte
i war hyte

LEDDi=l war PORTA.1
LEDDisZ war PORTA.O

TRIZA=%00000000
TRISE=%00000000

LEDDi=l=0
LEDDi=zZ=0

INTCON =
OFTION_EREG =

On Interrupt Goto ISE
10100000

INTCON =
=0

for i=1 to 99
W=+1

Gosub Prepare
pause 500
next i

goto HMain

Prepare:

Digit=T dig 1
Gosub binzZszeq
Mazkl=Digit

Digit=W dig 0
Gosub binzZzeqg
MaskZ=Digit
Return

(00100000

10000000 !

Value of number to be displayed
Mazk of mumber to be dizplayed
temporary wariahle

temporary wariahle

Transistor for ones digit
Transistor for tens digit

all pins of port &4 are output
all pins of port B are output
ones digit is off at the start
tens digit is off at the start

' Enahle interrupt THED
Initialization of prescaler

' Interrupt wectokr
' Enahle interrupts
' Initialization of wariahle W

Beginnhing of the program

Print walues from 0 to 99

Increaze wariahle W

Prepare walue from W to be displayed
Pause to see the digits

Print walues from 0 to 99 again
Value of ones iz put to war.

Conwerting digit to mask
Mazk 1 containz the mazk of ones

Digit

Converting digit to mnask
Mask 1 contains the mask of tens
Feturn from subroutine

124

Basic for PIC Microcontrollers 125

binzZzeq:
Lookup Digit,[%3F,506,55B,54F,566,56D,570,507,57F ,56E£] ,Cifra
Return
Di=zable ' Dizable interrupts while ISE i=
' executing
ISR:
PORTE=Maskl ' Put a mask of tens digit to port B
LEDDiszZ=1 ' Print the ones digit
pause 1 ' Hold it printed for 1 ms
LEDDis==0 ' turh off the tens digit
PORTE=Mask:Z Put a mask of ones digit to port B

1

LEDDi=l=1 ' Print the onez digit
1
1

pause 1 Hold it printed for 1 ms
LEDDi=l=0 turn off the ones digit
INTCON.2 = 0O ' Clear TOIF flag

Resume ' Beturn to progran

Enahle ' Interrupts are enabled again
End ' End of program

Interrupt initialized in this way will generate interrupt every time TMRO timer changes state from 255 to 0. Every time interrupt takes
place, interrupt routine will be executed so that human eye gets impression that both displays print values simultaneously. As can be
seen from the program code, everything tied to displaying digitsis moved to interrupt routine. However, part of the code for forming
the masks to be displayed isin the specia subroutine (Gosub Prepare) in order to make interrupt routine code as short as possible.
Another reason for thiskind of organization is also the need to create masks only when variable W is changed and not every time
interrupt takes place.

In the course of main program, programmer doesn't have to take care of refreshing the display nor anything about displays whatsoever.
Itisonly necessary to call subroutine "Preparation” every time value that will be displayed changes.

As2-digit values don't satisfy most needs, the following step is adding two additional digits. Program for realization of 4 sever-
segment displaysisjust an expansion of the program above. The main differenceisin the part for separating values to ones, tens,
hundreds and thousands.

Of al motors, step motor isthe easiest to control. It's handling simplicity isreally hard to deny - all thereisto doisto bring the
seguence of rectangle impulses to oneinput of step controller and direction information to another input. Directi on information is very
simple and comes down to "left" for logical one on that pin and "right" for logical zero. Motor control isalso very simple - every
impul se makes the motor operating for one step and if there is no impulse the motor won't start. Pause between impul ses can be
shorter or longer and it definesrevolution rate. This rate cannot be infinite because the motor won't be ableto "catch up” with all the
impulses (documentation on specific motor should contain such information). The picture below represents the scheme for connecting
the step motor to microcontroller and appropriate program code follows.

Basic for PIC Microcontrollers

126

Example of connecting step motor via step
m otor driver UCNS804

Hihf
|| . T
dl dl 2] %é %J] e
1 w - [] ra2 Rit [
—p—{] ouTe il
H4y 2 %']5: |—g RA3 RAl :1|B— ahiHz
[k OE
L OBLjTD o I R [Raaock o501 :1|5—|_r:' ': |
—M—] | o—]
L - ‘ﬂ ‘ﬂ ‘ L RMCIR pjg 05C2 1.1_T_| |
e il T 0 vss 16FB4 il [l ———
5] 11
T eno ano (1 — [ReoaT RE7 []
. Nl 12
H——_L: QLTS Step input]10] re1 rEs []
= a 1
5': K, Half =tep :L—m [l re2 rES [
Pt T]oUTs One Phase [1—¢ T‘: R RE4 j”
= LICHEE04 <4

Basic for PIC Microcontrollers

—(&

Main:

Letft:

RBight:

127

Program: Step.BAS

Include

TxData war woxrd

E0 war byte

El war
symbhol
symbhol
symbhol
symbhol
TRIZA

byte

gtep_in

ButtonZ

Button3 =
$£11111100
0

TRIZE

PFORTE]
low Dir in

low Step in

EO = 0

"modedefa. has"

Dir in = PORTA.D '
PORTA.1 '
PORTA.Z '

PORTA, 3 T

Modes of data transfer used
by instruction SHIFTOUT
Variakle where from data is
sent to shift register
Variahles used by

instruction BUTTON

Clk line is connected to RaD
Din line 1s connected to RAL
Button T2 is connected to RAZ
Button T3 is connected to RAZ

Configuring I/0 ports

button ButtonZ,0,2Z55,0,EB0,1,Left

EO = 0

button Button3,0,255,0,EB0,1,Right

goto Main

low Dir in
gosub Make circle

goto Main

high Dir in
gosub Make circle

goto Main

Make circle:

for E1 = 0 to 129

toggle Step in

T

T

T

Motor

makes

Jump to the beginning

det direction left
Make a full <ircle to left

Jump to the beginning

Set direction left
Make a full eircle to right

Jump to the beginning

uzed in the =sample

full circle in 200 steps

Basic for PIC Microcontrollers 128

Basic for PIC Microcontrollers

Chapter 7

Introduction

7.1 Keyboad
7.2 Driver for seven-segment displays- MAX7912

7.3LCD display

7.4 Serial EEPROM

7.5 RS-485

7.6 12-bit A/D converter LTC1290

7.7 12-bit D/A converter LTC1257

7.8 16-bit electrical current D/A converter AD421
7.9 Real time clock PCF8583

7.10 Diqital thermometer DS1820

This chapter gives detailed examples of connecting PIC16F877 microcontroller to peripheral components and appropriate programs
written in BASIC. All of the examples contain electrical connection scheme and program with comments and clarifications. Y ou have
the permission to directly copy these examples from the book or download them from the web site

http://www.mikroel ektronika.co.yu/ .

In more demanding applications that require greater number of buttons, it is possible to use buttons connected in matrix to keep

microcontroller 1/0 lines free. The following sampleincludes scheme of connecting the keyboard and accompanying program which
reads keyboard keys and prints the read value on LED diodes of port D.

129

Basic for PIC Microcontrollers 130

Keyboard is connected to 1
port B while LED diode is
connected to port D

State of these pins is "
examined in the
subroutine "Row"

indl Sl dndl & ndl

Caltaitalis,

. o a0 &) &l g E[]E]) &
e | L FETFED
[Jrenarn REEFE |
o [Jrenarn FEs _L
= [renarmyrer 25 L n =
[Fearace rez [] —
[[regame re] :
[Jreorens remmr [L
L‘ o [renars E v ["
i [Jreaczienr 5 va [ma ,
I_[[' E raneeet {1 — HF One is set on these
[m i lines in the
— Eﬁ:ﬂ ™ Eﬁ B % A | "Eéuhmpl%rtine"
[Jrrariczaricel menrycT [cankeys
HlH E [FcnT iz FeETHCE [% ﬁi
[, T E FECCR! RS %
R FiCa
= FOIIFEF1 FOAFSF?] 1M A M
’_[mn A
Iﬁl ij LED

The keys are connected into shared rows and columns. 10K resistors between input pins and the ground determine the state of input
pinswhen the key is not pressed. It means that the logical zero is on input pins when the keys are not pressed. In order to avoid short-
circuits between two pressed keys, 1K resistor isadded to each row.

Reading the keyboard is done by subroutine " ScanKeys". The keyboard is connected to port B, it's pins being designated asinput for
rows (RB7, RB6, RB5 and RB4) and output for columns(RB3, RB2 and RB1).

Basic for PIC Microcontrollers 131

o o Pressed
1 ‘ 2 ‘ 3 ke
State of the keyboard after o o
the key is pressed * * *
o o [+ Y
4 i = ‘ =3
' — '
o+ * ot
v i g t 9 ‘
"1" on the one of the ? ' e
inputs connected ta the A il "
rows represents the : 1 r" 0 r" 2 r"
pressed key. : ? ? : ?
g | a) [&) EpEpEpE]
[| v FETIFED
[renern Fes | }------- . ' I J_
[redarmyrer- 28 I : =
[razaraynes FEaFaw | T T
[Jrearoce ez | }------ _’1 --
[resame - rel [¥
[{renriors = Feam]
[renvmars = vt []
EEWW % Dne iz set on columnsto
i =~ assure that pressing the
key in that colurmn brings
"1"to input of the

appropriate row,

The program sets value of the last read key on port D. If none of the keysis pressed all diodes of port D areon. "*" and "#" are
represented with values 10 and 11.

The greatest task is on the subroutine ScanKey. It setslogical one on keyboard columns and then calls the subroutine Row which
checksif any of the 4 keysin that columnsis pressed (which is signalized by variable Flag).

In case that one of the keys from the column is pressed, variable KeyPress takes value from 0 to 3 (zero for the first row of that
column, one for the second row of that column, etc.). By calling the appropriate Lookup table, real value of the key is stored into

variable Result and then to variable OldResult where from it is displayed on port D. In case that no key is pressed value of variableis
12.

Basic for PIC Microcontrollers 132

Program: Tastatura. Ba3 }7
l ‘

0ldResult Var Byte ' Previously read character

Flag Var Bit ' Lemporary wvar.

KevyPressz Var Byte ' Presszsed key

Fesult Var Byte ' The read character

TRIZE=%11110000 ' Pins from EEO to BEE3 are output
' Pins from FE4 to BE7T are input

PORTD=%11111111 ' 411 diodes are on at start

Result=5FF

0ldResult=5FF

Main: ' Begimting of the program

PORTD=01dFResult ' Display the last pressed kevy
' on port D

gosub Scankevs ' Read the keys of the kevboard
if Result = 0ldResult themn Main ' 5Same character ?
if Eesult = 12 then Main ' None is pressed

goto Main ' Repeat loop

ScankKevys:
KeyPress=0 ' clear keypress
PORTE=%1000 ' Choose the lst column BFE3 = 1
gosub Fow ' check the rows

if Flag=1 then FirstColumh' If the kevy iz presszed aszign it
'a walue from look up table

PORTE=%0100 ' Choose the Znd column BE:Z = 1

gosub Fow

if Flag=1l then 3econdColunt

Basic for PIC Microcontrollers 133

PORTE=%0010 ' Chooze the 3rd columh RE1 = 1
gosub Fow
if Flag=1] then ThirdColumn

Fezult=12 ' None of the keys iz pressed
return
FirstColumn: ' If key iz in the lst column

lookup EKevyPress,[1l,4,7,10],Result
0ldResult = Eesult

return

SecondColumr: ' If key iz in the Znd column
lookup EeyPress, [2,5,58,0],Result
0ldResult = Result

return

ThirdColumt : ' If key iz in the 3rd column
lookup EKeyPress, [3,6,9,11],Result
01ldResult = Result

return
Ror:
Flag=1 ' get flag to 1 in case that the
' key 1is pressed
if PORTE.4=1 then ExitRow ' exit if it iz pressed in row I
KeyPress=KeyPresz+l ' if not, increase KeyPress and
' to the next column
if PORTE.5=1 then ExitBow ' exit if it iz pressed in row II
KeyPress=KevPresz+1
if PORTE.6=1 then ExitRow ' exit if it is pressed in row III
KeyPress=KevPresz+1
if PORTE.7=1 then ExitRow ' exit if it iz pressed in row IV
KeyPress=KevPresz+1
Flag=0 ' key iz not pressed, set flag to
' Zero
ExitRomr:
return ' Exit if none of the kevyz iz presszed

end ' End of program

Basic for PIC Microcontrollers 134

If aPIC16F84 or some similar microcontroller is programmed only to work with seven-segment displays (in multiplex mode) then it
could be called "driver". If we supply it with option to communicate, we have acomplete driver. If all that isrealized directly in
silicon while creating the "driver", we get full -fledge drivers that can be sold asindependent €l ectronic components.

Question "why use drivers and not multiplexing the digits" is easy to answer with another question "what in case that we need 6
groups of 4 digitsdisplay ?". It would require programmer to take care of multiplexing 4x6=24 digits. If the program in questionis
complicated, time necessary to write and adjust such a program might be more expensive solution than buying a separate driver.

Thereisagreat variety of driversand we will use MAX7912 in this sample. It can refresh 8 displays with option of configuring light
intensity, while datatransfer is serial, requiring small number of microcontroller pins. Anyhow, using the driver minimizes the work
with seven-segment displays.

Working with driver issimple. There are certain registers which get necessary values via SPI communication. Addressvalueis stored
into variable TxAddr and datais stored into TxData. Subroutine Send Data transfers address and data to driver. Before the first
transfer, driver should beinitialized by subroutine Init MAX which is called only at the beginning of the program. The picture below
shows the connection scheme and the sample program for printing the numbers 12345678 on displays follows.

135

Basic for PIC Microcontrollers

Gl Il N L

erlﬁw@
ﬂ-ml@. '}

lq [e 5[4 |8

6L ZIX W 1Balp

Aejdsip eia Aejdsip yuawbhba sg

Gunpauuoa jo ajdwex g

O sz reaa]] =
[ey PR ||
[+ Ear
e ez] H
[g)] = i
[Jromwion revmsoeimoy] —_—
[rearay wnorexen | ———o
O imasny pa MM
O e 55 E | e 3
O ream £ Wi ”_|.—
[=n T temvm I 9 o
[ren T N 1 i
[Jeraieay ETNEEE || D
[rau LR | 1agRd
[= T ||
[mawsay AV ”_|_ =
[van dunvmwana || o A im ‘;
O s)] _H_] —{] o [
O »oaxay W] — | w= v [
O =way THLH N 1 == s [}
o — ||_”_” = SE S o ._T,
AT e |1
Jlmﬁ []iz= s [}
e {] «n aa [
{] o= =i [}
{] o= e [
] 1= v [1
] o= wia [F—
] i L] Ques wall
N mn

2

2

g

L L
i i
oll0

L
I
0

L]
1
0

+ +

+

-——

+

-——

Basic for PIC Microcontrollers

Program: 7driwer . Bad

5]

Main:

Loop:

Include "nodedefs

Txiddr war hyte

TxData war hyte
word
Mix Data =

WDl war

symbol

symbol
symbhol

Mi¥ Clk =
Ma¥ Load =

TRIGA
TRISC

1]
(11010011

MaX Load = 1

gosub Init MaX
o = 1234

gosuh Dizpl
Wl = 5675

gosubh Displ

goto Loop

Init Mak:

Txhddr
TxData =

03
§ff

gosub 3end Data
Txhddr = %0a

TwData = 50£
gosub Jend Data

T=addr
T=xData =

§0b
507
gosub Jend Data
Txhddr = £0c
01
gosub Jend Data

T=Data =

T=addr

£00
§£E
gosub 3end Data

T=Data =

return

. has"

FORTC. 5

FORTC. 3
PORTA. 3

Modez of data transfer used by
instruction 3HIFTOUT

Variable for storing the
address of reg. in MAXTZ19
Var. for sending data

Tewp. war. of word type

Line for data input is connected
to pin RCS

Clk line iz conhected to pin RC3

Load line is connected Lo pin R&3

411 pins of port & are output
0,1,4,6,7 input: 2,3,5 output
Dizable access to MAKTZ1S

Initialize MAX7TZ19

Number displayed on the first
4 digits

Frint the data on the first 4
digits

Number displaved on the second
4 digits

Print the data on the second

4 digits

remain in the loop

Initialization MaX7:219
BECD mode for decoding the digits

Intensity of display light

Fefreshing the display

Turn on the display

No test

136

Basic for PIC Microcontrollers 137

Basic for PIC Microcontrollers 138

Appendix A

PIC BASIC AND MPLAB

| ntroduction

A.1 Installation of the progran/ MPLAB
A.2 Connection of PICBASIC and MPLAB
A.3 Toolbar

MPLAB is aWindows programming package that facilitates writing and the development of the program. The
easiest way to describe it would be to characterize it as a development environment for some standard
programming language intended for PC programming. Using MPLAB technically facilitates some of the
operations which al the way up to the appearance of the IDE environment, were operating out of the command
line with very big number of parameters. Nevertheless, out of different tastes, some programmers even today
prefer standard editors and compilers operating out of the command line. In any case the written code is very
manifest and provided with arelatively well-provided HELP menu (the abbreviation IDE was born out of the
initials Integrated Development Environment).

Basic for PIC Microcontrollers 139

MPLAB is composed out of severa different entities

- Thegrouping of the files belonging to the same project (Project Manager)
- Thecreationof the program and its elaboration (Text Editor)

- Simulator of the code whereby its work on the microcontroller is smulated.

Besides there exist support for Microchips products such as PICStart Plus i ICD (In Circuit Debugger). Asthis
book doesn't rely upon them, they'll be mentioned as options only.

The minimal requirements in order to start up MPLAB on your computer are:

- Compatible PC of 486 class or higher

- Microsoft Windows 3.1x or Windows 95 and more recent Windows OS versions
- VGA graphic card

- 8MB of memory space (32 MB recommended)

- 20MB space on hard disk

- The mouse

To gat MPLAB it is necessary to ingtal it first, which is understood as a process of copying of MPLAB files
from CD onto the hard disk of the PC. On each newly opened window there is button for going back to the
previous window so mistakes should not represent any problem. The installation itself flows smilarly as those
of amost al Windows programs. The welcome screen pops up first and then you have the option choice and the
installation menu in order to finaly get the message that your installed program is ready to be started.

Steps in the ingtalation:

Basic for PIC Microcontrollers 140

1. The starting of the Microsoft Windows

2. Put the Microchip CD disk into the CD ROM

3. Click onto the START in the lower left corner of the screen and choose the RUN option
4, Click onto the BROWSE and select CD ROM drive for your PC

5. On the CD ROM find the directory under the name of MPLAB

6. Click onto the SETUP.EXE and then on the OK button

7. Click once again on OK button in the RUN window

After these seven consecutive steps the installation will start. The following pictures explain the meaning of
single steps in the installation process.

MPLAB IDE ¥5_30 Inztallation E

Welcome!

Thiz inztallation program will install the MPLAE IDE 5 30,

Press the Mext button to start the installation. 'ou can press
the Cancel button now if pou do naot want to install the MPLAE
IDE +5.30 at thiz time.

LCancel |

The WELCOME screen at the beginning of the installation

¢ Back

At the very beginning it is necessary to choose those components of MPLAB with whichwe are going to work.
As it is supposed that there are no original Microchip’s hardware additions such as programming devices or
emulators, only the MPLAB environment, Assembler, Simulator and the instructions for use will be installed.

Basic for PIC Microcontrollers 141

MPLAB IDE ¥5_30 Inztallation E

Select Components
Chooze which components to install by checking the boxes
below.
¥ MFLAR IDE Files A2k
v MPASM szzembler/MPLIME Linker/MPLIE Filez 7614 k
W MPLAE SIM Simulator Suppart Files 6393 k
[~ MPLAE ICE Emulator Suppart Files 5789 k
[~ PICM&STER Emulatar Suppart Files 1200 k.
[~ PRO MATE Il Suppart Files G670k
[T PICSTART Plus Support Files 156 k.
[~ MPLAE ICD Debugger Suppart Files 247 k
¥ Help Files cili:1Y

Digk Space Required: 20835k

Dizgk Space Remaining: 1720592 k

¢ Back Cancel |

Selection of the components of the MPLAB development environment

The second supposition is that the OS will be Windows 95 (or some more recent version), so that in the
selection of the assembler language is taken out everything that is connected to DOS operating system.
However if you nevertheless wish to work in DOS, it is necessary to perform the deselecting of al the options
connected with Windows, and choose the corresponding DOS components.

Basic for PIC Microcontrollers 142

MPLAB IDE ¥5_30 Inztallation E

Select Language Components

Chooze which companents ta install by checking the boxes
below,

W MP&SM Azzembler for Windows 337 k
[MPASH Aszsembler for DOS 584 |
v MPA5SH dssembler Header Files, Samples, and T 2226 k

¥ MPLIME Lirker/MPLIE for 'windows35 1604 k
™ MPLIME Lirker/MPLIE for windows 2.1/005 2174 k
¥ Processar Linker Scripts 189k
Disk Space Required: 18077 |
Diigk Space Remaining: 1726193 k

¢ Back

Cancel |

Selection of the assembler and OS

As it is normd for ay program, MPLAB should be installed into a defined directory. This option can be
changed into any directory on any hard disk of your PC. Unless you have some specific reason, it should be |eft
on the selected location.

Basic for PIC Microcontrollers 143

MPLAB IDE ¥5_30 Inztallation

Select Destination Directory

Pleaze zelect the directony where the MPLAE IDE +5.30 files
are to be installed.

C:%Program FileshhPLAE Browze |

¢ Back

Cancel |

Selection of the directory for the MPLAB installation

The next option is necessary for the users who aready had some previous MPLAB version (different from one
that is being ingtalled). It's purpose is to save al the file copiesthat are subject to change upon the transition to
an updated version. In our case the selection of NO assumes that the ingtalation in course is the first one.

Basic for PIC Microcontrollers 144

MPLAB IDE ¥5_30 Inztallation

Backup Replaced Files?

Thiz installation program can create backup copies of all files
replaced during the inztallation. Do you want bo create
backups aof the replaced filez?

" Yes
Mo

¢ Back

Cancel |

The option necessary to the users who install the new version of MPLAB over some already existing installation

The start menu is the set of the pointers onto the programs opened by the click onto the START button in the

lower left corner of the screen. It is necessary to leave this option exactly asit is offered, snce MPLAB is going
to be started from here.

Basic for PIC Microcontrollers 145

MPLAB IDE ¥5_30 Inztallation

Add to Start Menu?

Do you want ko create shortcuts to access the installed files?

{+ ez
~ Mo

¢ Back

Cancel |

Adding MPLAB into the START menu

Location mentioned next is related to the part of MPLAB which will not be explained here as it is inggnificant
for users. By selecting an apposite directory, MPLAB will keep dl the files in connection with the linker in that
directory.

Basic for PIC Microcontrollers 146

Linker Scripts

Linker script Location

Due to the expanded number of linker scripts you may
now install them in their own sub director. Uzers with
previous projects may prefer to keep them in the MPLAE
directony for compatibility with exizting projects [default).

If you are a new uzer vou may wizh to keep theze in the
SLER zub directon.

i |nstall files to MPLAE install directony

£ |nstall files bo MPLABMLEr sub directony

Mest » I Cancel

Selection of the directory for the linker files

Every Windows program has the system files, usudly stored in the same directory as the Windows itself. After
numerous installations, the Windows directory has a tendency of becoming too big and encumbered. Therefore,
some of the programs permit their system files to be kept in the same directory as the program itself. MPLAB i<
one such program so that the option below should be selected.

Basic for PIC Microcontrollers 147

Select System Files

Select System Files

WWiould you like ko install zpstem DLL files o your
Wefindows S ys director? [F wou are running MPLAE
inztalled on a common network, you may not be
allowed to write fles ko this directary, IF yow do not
inztall them in the \WindowshSve directary, they will
be put in the zame directory az MPLAB.

™ Install filas to MadindowsiSps

£+ |nstall files bo MPLAB install directany

Mest » I Cancel

Selection of the system files directory

Following al steps up to now after pressing the button ‘Next' the installation is under way

MPLAB IDE ¥5_30 Inztallation E

Ready to Install!

oL are now ready to install the MPLAR 1DE +5.30.

Prezs the Mext button to begin the installation or the Back
buttan ta reenter the installation infarmation.

¢ Back

LCancel |

Basic for PIC Microcontrollers 148

The screen exactly before the installation

The ingtallation itself is brief and the course of the copying can be monitored on the small screen in the right
corner.

Installing

Copying file:
C:\Program Files\MPLABAPTECEEZ3.IMC

The installation in course

When the installation is terminated, two dialog boxes are present on the screen — one for the last information
concerning corrections and the version of the program, the other greeting one. If the text files (Readme.txt) are

opened they should be closed.

Basic for PIC Microcontrollers 149

MPLAB IDE ¥5_30 Inztallation

View README Files?

E ach inzstalled component of MPLAE IDE haz an azsociated
README file that containg impartant information, such as
device support and known izsues.

whould pou like to view theze files now’?

{+ ez
Mo

Pleaze review these files before contacting
Customer Support.

Cancel |

The last information concerning version and the corrections on the program

By clicking on the Finish button the installation of the program is thereby terminated.

To make work as easy as possble to those who aready got used to the assembler’s compiler and MPLAB,
Microchip has |eft the option of using, besides its proper, the compilers of the other manufacturers in its
MPLAB development tool. Before starting to write a program, it is necessary to undertake some adjustments.
Let's assume that, for example MPLAB is ingtalled in directory: C\ Program Files \ MPLAB and PIC BASIC
Pro compiler in C\ PBP.

You just start the MPLAB and choose Install Language Tool from the Project menu. The dialog box where the
corresponding options is to be set, the manufacturer first, (whereby directly in the next option comes the list of
compilers by the same manufacturer) and accordingly the compiler itself — in our case Pic Basic Pro Compiler-
and exactly as the one on the pict ure bellow will appear then. At the end on should click at the option “browse”
and find PBP.EXE file on the disk (in this case C: PBP\). By clicking on OK the basic settings are completed.

Basic for PIC Microcontrollers 150

Install Language Tool

Language Suite: |mi-::mEngineering Labs In-::j|

Tool Hame: |F‘i-::Basi-:: Pro Compiler j|

Executable: |E:"\F‘B PA\PEP_exd | Browse... |

* Command-line i Windowed

Cancel | Help |

Start MPLAB and choose the Ingtal Language Tool from the Project menu.

Next step isthe creation of the project that is done in a standard way by selecting New Project from the Project
menu and by assigning the project name e.g. “probepjt”. A specia care is to be given to the project storage
location. The new project and all its components must be located in the same directory as PicBasic Pro! For this
case, the project must be stored in C:/PBP.

Hew Project E |

File Hame: Directories: | (1] 4 I
proba_pijt c:\pb
| | | PP Cancel |
B EA -
{23 pbp Hel |
Help
[inc
[zamples
Lizst Files of Type: Drives:
IF‘mie-::t Files [=.pijt] j I =) ¢ system j

Creating project by selecting New Project from Project menu and assigning the project name as, e.g.
“probe.pjt”.

By clicking OK the new window Edit Project appears. In Language Tool “microEngeneering Labs’ is to be
selected (answer the incoming question with OK). It is, hence, necessary to click on ‘probe [.hex]’ in the lower
part of the window whereby the option Node Properties is activated.

Basic for PIC Microcontrollers 151

Edit Project

— Project
T arget Filename
|pmha.hex |

Include Path

Library Path

Linker Scrnipt Path

Development Mode: |EdilDl Only16F24 | Change...

Cancel

Help

il

Language Tool Suite: | microE ngineering Labs j|

— Project Files

Add Node,

Eopy Node.

BEmld/Node

|

|

Delete Node |
|

:

Hode Properties. .

The New window Edit Project for the definition of the manufacturer. Choose “microEngeneering Labs”

The purpose oh this window is to set the microcontroller for which the program is written.

By clicking Change button, the new window for choosing the available microcontrollers appears. As an option,
Editor only isto be |€eft in the absence of any available Microchip’s tools (this option states the use of MPLAB

asasnell for PIC Basic compiler).

Bu clicking Node Properties the window shown on the picture below appears. Choose "PM" version in the
assembler selection. Clicking the OK returns us to the previous window.

Basic for PIC Microcontrollers 152

NodeProperties |
Node: | PROBA HEX j| Language Tuul:| PicBasic Pro Compiler jl
— Ophions
Description I I I I Data =
Assembler 1 MPASMD . MPASMWY PMW —
Show BASIC Source a]l On o Off

Command Line
|-ol -p16F84 |

Additional Command Line Options

concd ||

The Add Node button is active now, and through it the name to the file with basic program is assgned. It isin
our case, ‘probebas . it is to take notice that the present action is only assigning name of the file into the
project. Its actual creation is done in next step.

Add Hode EE |

File name: Folders:
|pmha.has | c:\pbp
Cancel |
12ch08. bas - e -
12ch08a bas — =9 pbp
12ch09. bas i Help |
12c509a bas ne
12¢671.bas 1 samples Network..._|
12c672 bas | [ush =
12ceb18.bas p
12cebl19.bas hd
Lizt files of type: Drives:
Iﬁuun::e files [*.baz] j I = c: syztem j

Window for naming the program in writing. Opening of the file is done in next step.

Basic for PIC Microcontrollers 153

So far we defined microcontroller and the programming language. It still remains to open the file, write the code
and register it under the name given in previous step. (proba.bas).

By clicking File-> New the window in which the basic program will be written appears.

Before we start the program writing, file must be registered with the command File-> Save as, file name being
obvioudly “probabas’. The code writing can start now. The program here serving as an example is a very
smple one and its only function is to make the diode on a port B twinkle.

MPLAR IDE - C-\PEFPROBA_FPIT

Fe Brosect Edd Debug Options Took Window Hel

=] l=]=]a] [nE]e] il FFFE (T

= Hame : Proba.Bas -
= Hotice i Coppright {c) 2082 mikroElekbronika =
- @ All Rights Reserved -
= Date T gz raRe =
= Uersion HE -
- Hates H -
deFine osc
Hadn:
PORTE = 5FF * Turn on all LED diodes
Fause 500 YRS sec passe
FORTE = S0i * Turn off all LED diodes
Fause 50@ 'OBLS sBC pause

The window for writing Basic program

Upon finishing the code writing, the click on PROJECT-> Build All is performing the compilation of the

program. Unless there have been some errors, the obtained file is C:/PBP/probe.hex readable into the
microcontroller.

Basic for PIC Microcontrollers

Changing a toolbar

Saving a project

Cutting a part
of the text out

Pasting a part
of the text

Start program
execution

Step by step program
execution

Microcontroller reset

RAM memory Window

Yariables Window

!

ilualal-[z]s)

Bo|)s]]

i

|
[Resml [5Fr
F

154

Opening the project
Searching for a
part of the text
Copying a part

of the text

Saving the
assembler file
Stop program

execution

Skip conditions

RAM memory
Window

SFR registers
Window

Repeat translation of
the entire project

Since MPLAB is composed of severa separate parts, each of them possesses its own toolbar. However, there
exists atoolbar being a sort of acombination of al the others, which may be considered as a common one. This
toolbar is sufficient for our needs so it will be the explained in details. On the picture bellow this toolbar is
given with the brief explanations of the icons. Out of the limited format of this book, the basic toolbar is
displayed as the free one and in a standard position is aways bellow the menu, displaced horizontally along the

entire screen.

If, for whatever reason, currently used toolbar does not respond, upon clicking this icon the next toolbar
becomes available. The change goes into circle so that upon the 4th click, the same toolbar is obtained again.

=

If the current toolbar for some reason does not respond to a click on this icon, the next one appeays.
Changeover is repeated so that on the fourth click we will get the same toolbar again.

Icon for opening a project. Project opened in this way contains all screen adjustments and adjustment

Basic for PIC Microcontrollers 155

= EE

&

2 @ =&

BEEERF &

Icon for saving a project. Saved project will keep all window adjustments and all parameter adjust

mer

When we read in a program again, everything will return to the screen as when the project was clgpsed

Searching for a part of the program, or words is operation we need when searching through bigger
or other programs. By using it, we can find quickly a part of the program, label, macro, etc.

Cutting a part of the text out. This one and the following three icons are standard in all programs {]

ass

hat

with processing textual files. Since each program is actually a common text file, those operations are L

Copying a part of the text. There is a difference between this one and the previous icon. With cut ¢per:
when you cut a part of the text out, it disappears from the screen (and from a program) and is copied

afterwards. But with copy operation, text is copied but not cut out, and it remains on the screen.

When a part of the text is copied, it is moved into a part of the memory which serves for transferri
Windows operational system. Later, by clicking on this icon it can be 'pasted' in the text where the

Saving a program (assembler file).

ng c
cur:

Start program execution in full speed. It is recognized by appearance of a yellow status line. With fthis

program execution, simulator executes a program in full speed until it is interrupted by clicking on
traffic light icon.

the

Stop program execution in full speed. After clicking on this icon, status line becomes gray again, and pi

execution can continue step by step.

Step by step program execution. By clicking on this icon, we begin executing an instruction from ti
program line in relation to the current one.

Skip requirements. Since simulator is still a software simulation of real work, it is possible to simpl
some program requirements. This is especially handy with instructions which are waiting for some
requirement following which program can proceed further. That part of the program which follows
requirement is the part that's interesting to a programmer.

Resetting a microcontroller. By clicking on this icon, program counter is positioned at the beginnin
program and simulation can start.

By clicking on this icon we get a window with a program, but this time as program memory where
which instruction is found at which address.

With the help of this icon we get a window with the contents of RAM memory of a microcontroller.
By clicking on this icon, window with SFR register appears. Since SFR registers are used in every p
is recommended that in simulator this window is always active.

If a program contains variables whose values we need to keep track of (ex. counter), a window ne
added for each of them, which is done by using this icon.

When certain errors in a program are noticed during simulation process, program has to be correc
simulator uses HEX file as its input, so we need to translate a program again so that all changes w
transferred to a simulator. By clicking on this icon, entire project is translated again, and we get th

ne n

y sk

we (

rogr

eds

ted.
ould
e ne

version of HEX file for the simulator.

Basic for PIC Microcontrollers 156

Appendix B

Introduction

B.1 Installation of the PIC Basic Pro compiler

B.2 Installation of aMicroCODE studio

B.3 Connecting MicroCODE Studio and PBP compiler
B.4 Connecting MicroCODE Studio and the programmer
B.5 Code writing and compilation in MicroCODE studio

Although the code writing can be done with the smplest editor and compiled in command line (those who had
progranmed in DOS probably remember well those acrobatics) using specia “editors’ appropriate for
programming language is far better.

Such specialized editors are called “Integrated Development Environments’ - /DE. Using them makes code
writing easier as the programmer is able to supervise which variables, labels or smilar program elements have
already been used. At the same time, they make command words bold and even write them in another color
rendering thereby program more intelligible. The option for automatic call up of the programmer is also
available together with many other facilities. Simply put, faving those facilities without using them is like
climbing on foot to the 13™" floor of a building with eevator.

Thefirst thing to be doneisto create anew directory into which the compiler will stored. Let it be the directory C:/PBP. Then follows

the copying of datafile PBP240.EXE into that directory and its unpacking (compiler entersin the form of unpacking archive)? by
double-clicking it. Unless the compiler is unpacked it is enough to copy it into the desired directory.

Installation of the editor starts by double-clicking on MCSTUDIO. Afterwards, the standard setup process is

started where the computer location for the editor’ s installationcan be chosen. The setup process starts with the
usua warning to close al other active windows. By clicking on button Next, the setup continues.

Basic for PIC Microcontrollers 157

Welcome E3 |

Wwielcome to the MCS Setup program. This program
will inztall MCS on your computer.

[t iz ztrangly recammended that you exit all Windows programs
before running this Setup progranm.

Click Cancel to gquit Setup and then cloze any programs you
have running. Click Mext to continueg with the Setup program.

WARMIMNG: This program iz protected by copyright law and
international treaties.

|Inautharized reproduction or diztibubion of thiz program, ar any
portior af it, may rezult in severe civil and criminal penalties, and
will be prosecuted to the maximum extent poszible under law,

Cancel |

The first window after the installation starts. It is necessary to click on button Next

Next question is whether you accept the license and copyright rules or not. By accepting these rules by clicking
on the Yes button, the installation goes forward. The next image corresponds to that phase of the installation.

Basic for PIC Microcontrollers 158

Software License Agreement E |

Fleaze read the following License Agreement. Prezs the PAGE DOWH key to zee
the rest of the agreement.

Lizenze Aagreement -
Pleaze read the following carefully before uzing this zoftware. By installing the software

oL are agreeing to be bound by the fallowing terms and conditionz. PLEASE MOTE

THAT THIS SOFTwWARE PACKAGE IS MOT COPYRIGHT FREE. IF YOU "ISH TO
REDISTRIBUTE THIS SOFTWARE PACKAGE OR MAKE IT AVAILABLE FOR
DOWwWHLOAD YA THE INTERMET OR WORLD wWIDE WEE [afafe], YO MIJST
COMNTACT MECAMIGUE UK. FIRST AHMD OBTAIM PERMISSIOMN.

Copyright

Al title and copyrightz in and to the Software Package and any copies of the Software
FPackage are owned by Mecanigue UK unless stated othemwize. The Software Package

iz protected by copyright laws and international treaty provizionz. Therefore, you must

treat the software like any other coperighted matenal. The Software Package and

elements of the Software Package may not be reverse engineered, sold, lent, dizplayed, LI

Do yow accept all the terms of the preceding Licenze Agreement? [F pou choose Mo, Setup
will cloze. To install MCS, wou must accept this agreement,

¢ Back ez Mo |

The directory for editor location is the next question. In case of failed statement of the directory, the installation
isto be effectuated in CAProgramFiles\M ecanige.

Chooze Destination Location

Setup will inztall MCS in the following Folder.
Ta inztall ta this falder, click Hest.

To inztall to a different folder, click Browse and select another
folder.

You can chooge not ta ingtall MCS by clicking Cancel to exit
Setup.

C:%Program FileshMecaniquetMCS Browse... |
Cancel |

The choice of an installation directory. The best choice is to leave the option by default. It is necessary to click
on OK button in order to proceed

" Deztination Folder

¢ Back

Basic for PIC Microcontrollers 159

The name and address of directory is without any specia meaning for further programming. The real issue is
the available memory space on the hard disk or on the need for keeping all items associated with a single
program in the same directory.

The next question refers to the name of programming group. The name already offered corresponds to the
program name <0 it should be left as such.

Select Program Folder E3 |

Setup will add program icons to the Program Folder lizted below.
f'ou may twpe a new folder name, or select one from the existing
Folders list. Click Mest to continue.

Program Folders:

hdicroCodeS tudio

E xizting Folders:

ALCD Svstems

Activizgion Value

Adobe

ahead Mero

Animaaic GIF

ATMEL AR Toals

Bitwiare lcons

Chepenne Bitw are ;I

¢ Back I Mest » I Cancel |

The program group is to be named MicroCodeStudia Clicking on Next, the installation goes on

Finaly, the window appears confirming the successfully performed ingtallation.

Basic for PIC Microcontrollers 160

Setup Complete

|nztallation iz now complete.

Click Finizh to complete Setup.

< Back

Clicking on Start-Programs-MicroCode Studio starts up the just ingtaled MicroCode Studio and the window
from the picture bellow will appear.

Basic for PIC Microcontrollers 161

MicroCode Studio - PICBasic Pro [Untitled_bas]

| File Edt Search View Help
D ¢ EE S S

J Target Prncessur:l@MEFEEB j B - | = | o) [Bl
J & dh-| e 0w o Pot:com vI||
JE |
I ||“||:|I,||jE$ H f*ﬁ-ﬁ-ﬁ-ﬁ-:i-:(-*ﬁ-ﬁ-*ﬁ-:i-:(-ﬁ-ﬁ-ﬁ-*ﬁ-:i-:(-ﬁ-ﬁ-ﬁ-*ﬁ-:i-:(-ﬁ-ﬁ-ﬁ-*ﬁ-ﬁ-:(-ﬁ-ﬁ-ﬁ-ﬁ-ﬁ-ﬁ-***********************ﬂ
] Defines vE Name : UNTITLED.BAS *
] Constants ' Author @ [set under view...options] *
] Yariables ' Notice @ Copvright (o) 2002 [set upder view...options] *
] Aliaz and Modifiers e : A1l Rights Reserved *
) Symbols ' Date : 2/24/02 %
] Labels r® Varsiom ! 1.0 *
T4 HNotes *
L -
L R R R R R]

f o

|.reau:|_l,l ||'_§'| Lr11: Col 1 | o

To connect MicroCode Studio and PBP compiler a new window is to be opened. It's done by clicking on the
Options from the View menu. If the compiler is aready copied into a hard disk directory clicking on the Find
Automatically button whereupon will the program itself search for the directory with compiler through the hard
disk. When the program finds the compiler, above the button the path “CAPBP’ will appear above the button
Find Automatically.

Basic for PIC Microcontrollers 162

N ~ |

PICE asic |E|:|it|:|r I Orline Updatingl

Caompiler | fgzembler I Programmer I

F-\uzerz\baneipic_easy_new\picbazic

Find Automatically | |1 Find Manually... |

Includes | Options I

.-i'-.u:lu:l... | E‘ Hemu:uvel

Cancel Help

¥ Save Settings on Exit

Connecting MicroCode studio and PBP compiler. If the PBP compiler is already copied into a directory on a
hard disk, it is enough to click on the Find Automaticaly button and the program will find it on its own

Beside the path to the compiler, it is till necessary to define the path to the include data file. By clicking on Add
the paths C:/PBP and C:/PBP/inc are added within Includes.

Basic for PIC Microcontrollers 163

PICE azic | E ditar I Orline Updatingl

[
Compiler |.-’-‘-.ssem|:nler| Programmer | Select Folder EE

Fleasze zelect the folder you wizh to add to your current include
c:\pbp lizt:

Find Autematicaly | (] Find =L igee [|
{:l Mzaql?
B My Documents
Ineludes | Elptiu:unsl g Nidtree J
=L pbp
w0 zamples
w77 ush
-] Pic-eagp
=1 Program Files
{:l Acceszones
&1 ACD Systems
mﬁ A rbivizion Walie j

Add... 5 Remave | ok, I Cancel |

v Save Settings on Exit Ok | Cancel | Help |

Include data files are necessary for successful compilation of the program. Clicking the Add, the new window
appears with theinc directory into which the PBP compiler is copied

Basic for PIC Microcontrollers 164

Options |

PICE azic |E|:|it|:|r I Orlire Updatingl

Caompiler | fzzembler I Prograrmmer I

c:ipbp
Find Automatically | |1 Find Manually... |

|nizludes | Options I

chpbphinc
ch\php

.-i'-.u:lu:l... | E‘ Hemu:uvel

Cancel | Help

¥ Save Settings on Exit

Optionswindow after setting the path to the compiler andinclude data files. Notice that there areinclude data
files in the very C: \PBP directory so that their path should be specified as well

This step finishes the setting part referring to the compiler. MicroCode studio is nhow ready for program reading
and compiling.

The ingallation of the programmer that MicroCode will cal upon successfully accomplished program
compilation is to be undertaken only if the user possesses some development environment or some of the
programmers that will read in the compiled program into the microcontroller. In lack of any of these toals this
part of MicroCode studio setting is to be omitted.

The setting of the programmer starts by clicking on Programmers whereupon two distinct options appear, one
for adding of programmer into the list and another for their removal. The programmer that is to be used here

Basic for PIC Microcontrollers 165

ranks as the simplest economic programmers of PIC microcontrollers that are available at the moment. The
name of this programmer is /Cprog and it uses the seria pin of the computers port in order to communicate with
the microcontroller (more details can be found in the specid appendix contained in this book).

N |
FICE azic | E ditar I Oriire Updatingl

Eu:umpilerl Azzembler Programmer |

Drefault Programmer ; I EPICWin j Edi... |

Add Mew Programmer. .. | g‘E‘ Remowve Programmer E ntry |

Inizludes | I:Iptigngl

.-i'-.u:lu:l... | E‘Hemwel

(] Cancel Help

[¥ Sawve Settings on Exit

By clicking Programmersthe part for setting the programmer appears

Before ingtalling the programmer, it has to be copied in a directory on the hard disc, eg. “ C\Programmer”.
Clicking the “ Add new Programmer...”, the brief procedure of selecting the path to programmer begins.

The first step is writing the name of the programmer or any abbreviation that could bear resemblance to it. As
Icprog programmer is used it is logical to name it “1Cprog”.

Basic for PIC Microcontrollers 166

Add Hew Programmer E |

Select Display Hame

Type in the name of the programmer to be displayed in
@ MicroCode Studios drop down selection boxes. For

example, ERICWIN or melabs Loader. The name is for

dizplay purpozes only, and can be anything you like.

Dizplay Mame |i|:|:|r|:|g

< Back | Mext = | Cancel |

In this option the name of the programmer is to be written. It can well be any of the names bearing resemblance
to the programmer we wish to install

The next step is the writing of the exact name of the programmer. It is very important not to make any mistake;
otherwise the program will not be able to locate it on a hard disk.

Add New Programmer Ed |

Select Programmer Executable

Type inthe name of the programmet executable name. For
example, epicvwin.exe of meloader . exe. Dont include the
pathname, just the executable name.

In this option, the exact name of the executive data file of the programmer is to be indicated. In this case it’s
icprog.exe

Finaly, by clicking on Find Automatically, the program then finds on its own the path towards the programmer.

Basic for PIC Microcontrollers 167

Add Hew Programmer E |

Select Programmer Path

MicroCode Studio can automatically search for the path
@ that contains the programmer executable, or vou can
chooze it manually.

c'programmer

[Find Manually... |

< Back | Mext = | Cancel |

By clicking on Find Automatically the program finds the path to the programmer on its own

Option to define additional parameters is next. Nevertheless, it is to be omitted due to the fact that it will be
used in a later phase of the operation when the longer programs are written and the program name is not
changed very often. Clicking on Finished overrides this option.

Add New Programmer E |

Select Parameters

when the programmer iz started. You can alzo 'hind' hex
filenames and target devices using Fhex-filenamed and
Ftarget-device§ respectively.

Click here to view an example

@ MicraCaode Studio enables you to pass certain parameters

Parameters : I

< Back | Mest » EE—

The option to define the additional parameters of the programmer is not to be used here; therefore it is to be
omitted by clicking on Finished

Thewindow Option out of the View menu with the set parameters for the compiler and the programmer now
looks like exactly as on the image bellow. Thereby all relevant settings of the MicroCode Studio are finished.

Basic for PIC Microcontrollers 168

Options |

PICE asic |E|:|it|:|r I Online Updatingl

Eu:umpilerl fgzembler Fragrammer |

Default Programmer : I "I Edi... |

Add Mew Programmer. .. | aﬁ Remove Programmer Entoy |

Includes | Options |

chpbphinc
hpbp

.-’-'-.I:Id... | If.' Fleml:uvel

ak. Cancel Help

¥ Save Settings on Exit

Window Optionwith all the parameters for the compiler and the programmer set

Besides the setting of the compiler and the programmer, there are somewhat |ess important settings as that of an
editor. Since those parameters are aready well set we will not take them into consideration now.

The MicroCode studio looks like most of the Windows programs. Above the working area there are menu lines,
toolbars and the line connected to the compilation and reading of a program into the microcontroller.

Basic for PIC Microcontrollers 169

MicroCode Studio - PICBasic Pro [proba.bas)

| File Edt Search View Help
|DEE @ E2B|& %
J Target Processor : I@S'HSFE?? j Bk - | = | s i Bk
J & &-|e 0 n | Par:oom 7] =
|
_I |nc|udeg L Ry R s
[Defines T Name : Proba.BAS *
E} nsc "% Notice ¢ Copviight (o) 2001 mikroelektronika £
] Constants r# : All Rights Reserved *
(] Wariables r4 Date p 17027502 *
'L'} LED T Version @ 1.0 *
'L'}I rE Mobes *
. - L . -
] Alias and Modifiers)
L Ry R
(L3 Symbols
- By LED
ﬁ? : define osc S
i B0 LEDs_TRIS -
D LahE|S_ symhol LED=s = PORETE ' Led diodes are on port B
- ™ Main symhol LEDs_TRIS = TRISB ' Direction register of LED port
o B Flash
LED wvar hyte ' Varighle for storing
' LED diodes states
i wvar byte ' Counter
LED=s TRIZ = §00 " LED port is output
LEDs = 0 ' Turn off LED doides
Main:
LED = 1 ' Starting state of LED diodes b
ﬂ 2
(@ ready BLln2:Col3 | 4

The menu line contains all standard submenus as File, Edit, Search, View and Help.
The toolbar contains but afew basic icons and their purpose we will not explain in details.

What separates the MicroCode studio from the other development environments is its smplicity and legibility.
Its most important part is located in the left part by the name Code Explorer. When necessary, that part of the
window can be shut down by clicking onView — Code Explorer... dthough it is recommended to leave it asit is
for it contributes to the better legibility and organization of the program. The code writing is done in the right
part of the window. The process of code writing itself is largely facilitated by thickening of the commands, and
by the excellent solution for the complicated commands with the greater number of parameters as “button”

Basic for PIC Microcontrollers 170

command is. Namely, after writing of this command and the first empty (blank) character, the yellow frame
with al parameters of the respective command appear.

Upon having written the code, by clicking on icon Compile Only (in triangular shape on the right side) the
compilation of program starts. If an error occurs, it’s reported in a specia part at the bottom of the window. By
clocking on Error, the cursor is positioned exactly at the row in which the error occurred. After correction, the
program is compiled as long as the compilation process becomes successful.

If the programmer is aready configured, then the icon right next to the Compile Only can be used instead,
which will, upon a successfully accomplished compilation, call the programmer.

Basic for PIC Microcontrollers 171

I # MicroCode Studio - PICBasic Pro (proba.bas)

|| Fle Edit Search View Help
I DeE 228 %
J Target Processar I@QP‘IEFB?? j ﬂn{%} v | = | w1 i sk
J & & - B O w | Pot:[cOM Compie Onp-F3
1.2
| =
] Includes next i * repeat the loop & times (0-7) ﬂ
([Defines
E‘; oiC gosub Flash ' 0311 the subroutine Flash
|21 Canstants
N Variables goto Main " Jump to the beginning
¥y LED
E? i Flash: ' Beginming of the subroutine Flask
] Alias and Modifiers
for i = 0 to 2
3 Symbols .
8y LeDs LEDs = §ff " Tur or 211 LED diodes
ﬁ? LEDs TRIS Pause 500 " 3.5 sec pause
. - LEDs = $00 ' Turn off all LED diodes
D 8 esl Pausze 500 0.5 3ec pause
‘ Main next i ' repeat tke loop § times [0-T)
i B Flash
return
End
-
4] o

Al emorline 59 bad expression. [proba.baz)

@ compilation enars B Ln59: Col 1 | A

Clicking on the icon in the port form, the specia window for examining the seria connection with the
microcontroller opens. The Serial communication window serves for the seriad communication between PC and
the microcontroller. An additiona option exists which enables the change of al the transfer parameters such as
the port on which the microcontroller is attached, the transfer rate or the transfer format.

Basic for PIC Microcontrollers 172

Serial Communication Window

| File Edit Help
J 0 | Connect Send Meszage ||

|71 Baudrate

|- Parity
|_7] Byte Size
|7 Stop Bits

" of

| @ disconnected o

Option for examining the serial connection with the microcontroller

